
High-Throughput LDPC Decoding
Using The RHS Algorithm

François Leduc-Primeau⇤, Alexandre J. Raymond⇤, Pascal Giard⇤†, Kevin Cushon⇤,
Claude Thibeault†, and Warren J. Gross⇤

⇤Department of Electrical and Computer Engineering, McGill University, Montreal, Qc, Canada H3A 0E9.
Email: {francois.leduc-primeau, alexandre.raymond, pascal.giard, kevin.cushon}@mail.mcgill.ca, warren.gross@mcgill.ca

†Department of Electrical Engineering, École de technologie supérieure, Montreal, Qc, Canada H3C 1K3.
Email: claude.thibeault@etsmtl.ca

Abstract—The relaxed half-stochastic (RHS) algorithm is a
recently proposed binary message-passing decoding algorithm
for low-density parity check codes that can reach the same error
rate performance as belief propagation algorithms that exchange
LLR messages. Because of its low-complexity interleaver, the RHS
algorithm makes it possible to achieve a fully-parallel implemen-
tation that can converge to a codeword in only a few clock cycles
on average, enabling high throughput and power efficiency. To
demonstrate the practicality of the RHS algorithm, we implement
a decoder for the popular IEEE 802.3an 10GBASE-T standard.
The paper presents details of the hardware implementation, as
well as post-layout results for an ASIC implementation in 65nm
CMOS technology, which indicate that the decoder can operate at
448 MHz and occupies an area of 4.41 mm2. The results obtained
from bit-accurate software simulations show that the decoder
meets the latency requirement prescribed by the standard and
provides an average throughput of 160 Gbps.

I. INTRODUCTION

Among capacity-approaching codes, low-density parity-
check (LDPC) codes are a very interesting choice for high-
throughput applications, because they can be decoded with a
high level of parallelism using belief propagation (BP) algo-
rithms. However, in practice, making use of all the available
parallelism in the decoding algorithm for codes with lengths in
the thousands of bits remains a challenging task. Fully-parallel
implementations are attractive because they can converge to
the transmitted codeword in a very small number of clock
cycles on average. This can be used either for enabling very
high throughput applications, or to save power through a
reduction of the switching activity, or by including a sleep
mode.

As pointed out in [1], the main challenge in a fully-parallel
circuit implementation is to efficiently route the large amount
of wires needed to exchange messages between the processing
nodes. For this reason, a naive approach to the design results
in an implementation with a very low ratio of logic area to
silicon area. The first step in reducing routing complexity
is to reduce the number of parallel wires used for message
passing. Some algorithms have been proposed that use the log-
likelihood (LLR) representation for computations, but transmit
messages on a single wire. In [2], [3] the LLR values are
simply transmitted serially, while in [4] the magnitude of the
LLR message is represented by the width of a pulse, which
reduces the complexity of the computations and the switching
activity in the interleaver. A BP decoding algorithm for LDPC

codes that is constrained to using modulo-2 addition as its
check node update function is known as a binary message-
passing (BMP) algorithm. BMP algorithms use the minimum
amount of wires to exchange messages, but they also have
other important properties pertaining to the layout of their
interleaver in the circuit implementation. BMP algorithms
often use as input a single bit of information per codeword bit,
for example Gallager’s algorithms A and B [5], or the “DD-
BMP” algorithm presented in [6]. To take advantage of more
information bits at the input, [7] builds on the stochastic rep-
resentation of the likelihood information originally proposed
in [8].

The relaxed half-stochastic (RHS) algorithm [9] is a BMP
algorithm that differs significantly from other BMP algorithms
in that it can achieve the same bit error rate (BER) as the sum-
product algorithm (SPA) implemented in floating-point [10].
In this paper, we demonstrate that the RHS algorithm can be
used to implement a very efficient fully-parallel decoder for
the IEEE 802.3an 10GBASE-T standard [11]. We first provide
a review of the RHS algorithm in Section II. The circuit
architecture is presented in Section III, and in Section IV
we discuss the synthesis results for our implementation and
provide the decoding performance in terms of error rate as
well as average and maximum decoding time.

II. THE RHS ALGORITHM

Belief propagation decoding algorithms are conveniently
described in terms of the factor graph [10] (or Tanner graph)
representation of the code. The factor graph is a bipartite graph
with variable nodes (VN) representing the codeword symbols,
and check nodes (CN) representing the parity constraints.
The algorithm can then be characterized by specifying a VN
computation, which describes the messages sent from VNs to
CNs, and a CN computation, which describes the messages
sent from CNs to VNs. We must also specify how to compute
the estimate of each codeword symbol. A decoding iteration is
performed as follows: 1) All VNs send a message to their CN
neighbors, 2) all CNs send a message to their VN neighbors,
and 3) an estimate is generated for each codeword symbol.
In the RHS algorithm, the VN computation includes memory
elements that we will refer to as trackers. For clarity, we will
describe separately how the trackers are updated. Note that
this paper only provides a minimal description of the RHS
algorithm. Further details can be found in [9].

A. Variable node computation

As is well known, the SPA converges to the maximum-
likelihood estimate of each codeword symbol in a cycle-free
graph [10]. In order to achieve high error rate performance,
the RHS algorithm performs the VN computation of the SPA
exactly. This computation is best carried out in the LLR
domain, as this simplifies the computation to an addition and
reduces quantization errors. In the SPA, a message sent on
output i of a VN is given by

⇤

0
i

= ⇤

o

+

dvX

j=1

(⇤

j

)� ⇤

i

, (1)

where d

v

is the degree of the VN, ⇤

o

the prior symbol
likelihood, and ⇤

1

,⇤

2

, . . . ,⇤

dv are the VN input messages.
In RHS, the VN sends and receives binary messages.

Therefore, ⇤
j

is not directly the message received at the VN,
but rather the content of tracker j, whose value is updated
from the binary messages. For the same reason, ⇤0

i

is not the
output message. Therefore, we will call it the i-th intermediate

output.
In order to send binary messages that can precisely represent

the value of the intermediate output, we rely on stochastic

messages, which are random binary messages with a statistical
distribution representing ⇤

0
i

. Specifically, let X

i,j

2 {0, 1}
be a binary output message on edge i. We want to generate
a message such that E[X

i,j

] =

1

1+exp(⇤

0
i)

. Several binary
messages, indexed by j, can be generated from the same
intermediate output ⇤

0
i

. For the 10GBASE-T code, we use
j 2 {1, 2}, which means that two binary messages are sent on
each edge of the code graph at every iteration of the algorithm.

B. Check node computation

As with any BMP algorithm, the check node com-
putation used in RHS is simply a modulo-2 sum. Let
X

1,j

, X

2,j

, . . . , X

dc,j be the binary messages received by the
CN. The i-th CN binary output Y

i,j

is given by

Y

i,j

= X

1,j

� . . .�X

i�1,j

�X

i+1,j

� . . .�X

dc,j , (2)

where � denotes modulo-2 addition. If the CN inputs are
independently distributed such that E[X

i,j

] = p

i

, we have
that

E[Y
i,j

] =

1

2

�
Q

dc

j=1

(1� 2p

j

)

2(1� 2p

i

)

, (3)

which corresponds to the SPA CN function in the probability
domain. On other words, the exact SPA function is computed
on the message distributions instead of individual messages.

Eq. (2) has two interesting properties that are not found
in the CN function of min-sum algorithms, and which are
useful for simplifying the layout of a fully-parallel decoder
implementation. First, each output i can be expressed in terms
of the i-th input and of a total:

Y

i,j

= (X

1,j

� . . .�X

dc,j)�X

i,j

. (4)

In addition to providing a lower complexity implementation,
(4) makes it possible to compute a single total parity value
in the CNs and to broadcast this result to all neighboring

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Λ(t−1)

Λ
(t

)

m
 ^

 = 0

m
 ^

 =1/2

m
 ^

 = 1

Fig. 1. LLR tracker transfer functions f(⇤i(t� 1); m̂i(t)) with � = 0.25,
and m̂i(t) 2 {0, 1

2 , 1}.

VNs. Those VNs can then subtract their own contribution to
the parity in order to retrieve the extrinsic parity. Second, (2)
can be factored arbitrarily, which adds flexibility in the gate
placement in the implemented decoder.

C. Tracker update

With j 2 {1, 2}, the VN receives two binary messages from
each of its CN neighbors at every iteration. On a given input,
the two messages are independent and identically distributed.
We can therefore easily obtain the maximum-likelihood mean
estimate for input i: m̂

i

=

1

2

(X

i,1

+X

i,2

). This estimate should
be seen as a higher precision message, albeit of course still
random. To obtain even higher precision, we track the (non-
stationary) distribution of the message streams across decoding
iterations. This approach is inspired by successive relaxation
[12], which can also improve the error rate performance of
deterministic BP algorithms such as SPA and min-sum. For
this purpose, we use the simple linear tracking filter given by

p

i

(t) = (1� �)p

i

(t� 1) + �m̂

i

(t), (5)

where 0 < � 1 is a design parameter. As mentioned previ-
ously, the VN computation is performed in the LLR domain.
Therefore, to minimize the implementation complexity, we
also want to perform this tracking in the LLR domain. Each
VN input i is equipped with an LLR-domain tracker, and we
denote its value at iteration t by ⇤

i

(t). We approach the im-
plementation by considering the tracking function separately
for each possible value of m̂

i

. We write the tracker update as
⇤

i

(t) = f(⇤

i

(t� 1); m̂

i

(t)).
Fig. 1 shows an example of the LLR-domain tracking

transfer functions. We can see that the functions have the
property that f(⇤

i

; 0) = �f(�⇤

i

; 1). This will be used
in the implementation. Furthermore, the functions can be
approximated by piecewise-linear functions with parameters

a, b, c, d:

f(⇤, 0) ⇡
(
⇤+ b if ⇤ � d,
d if ⇤ < d.

(6)

f(⇤, 1/2) ⇡

8
><

>:

a⇤ if �c ⇤ c,
�c if ⇤ < �c,
c if ⇤ > c.

(7)

D. Codeword estimate

As in the SPA, the codeword bit x associated with a VN is
estimated from the LLR total ⇤

T

= ⇤

o

+

P
dv

j=1

⇤

j

:

x̂ =

(
0 if ⇤

T

� 0,
1 if ⇤

T

< 0.
(8)

III. ARCHITECTURE

The architecture of a fully-parallel LDPC decoder consists
of small components replicated a large number of times. Un-
like in partially-parallel architectures, most of the implementa-
tion work consists in optimizing these small components, and
as such fully-parallel architectures can be easier to implement.
In the RHS decoder, the variable node components represent
most of the decoder area. In turn, the trackers represent a
large portion of the VNs. Optimizing these small components
therefore has a big effect on the overall complexity of the
decoder. The optimizations that will be presented were tested
with the 10GBASE-T code. The code has a length of 2048
bits, with a code rate of 0.8413. It is regular with variable
node degree d

v

= 6 and check node degree d

c

= 32.

A. Variable node

The variable node component takes as input a prior LLR
estimated from the channel as well as stochastic messages
received from the check nodes, and outputs stochastic mes-
sages and an estimate of the codeword bit. The LLR prior
is quantized on 4 bits with a range of [�7, 7]. The variable
node processing includes three steps: 1) update of the trackers,
2) SPA addition, and 3) generation of the binary stochastic
messages. The component contains 6 trackers that together
store the values {⇤

1

, . . . ,⇤

6

}. As is usually done to minimize
complexity, the 6 extrinsic sums of the SPA computation
are generated by first computing an LLR total ⇤

T

for the
node, and then subtracting the intrinsic value, as illustrated
in (1). After this step, we are in possession of ⇤

0
1

, . . . ,⇤

0
6

.
The stochastic output messages X

i,j

are then generated by
comparing the intermediate outputs with a random threshold
T

j

, where 1 i 6 is the output index and 1 j 2 is the
bit index:

X

i,j

=

8
><

>:

0 if ⇤0
i

> T

j

,
1 if ⇤0

i

< T

j

,
B if ⇤0

i

= T

j

,
(9)

where B is a fair random bit used to prevent the quantization
of T

j

from biasing the distribution.
In order to minimize the complexity of the interleaver, we

serialize the transmission of the stochastic bits; this implies

Fig. 2. Register placement within the decoder, with registers shown as shaded
boxes. The diagram is not functionally accurate: only one message input and
output are shown, and the loop through the CN should be understood as
starting from some VN and ending at a different VN. Note that only 64 out
of 2048 VNs include the “Parity-check” block.

that two clock cycles are needed at each iteration. We can
achieve this while keeping the cycles approximately balanced
by placing 1-bit registers at the input of the VNs, as illustrated
in Fig. 2. In the first cycle, the SPA sum is computed, and
a stochastic bit (generated using T

1

) is sent on each edge,
through the check nodes, to be stored in the VN bit registers.
In the second cycle, stochastic bits generated using T

2

are sent
through the check nodes, and the trackers are updated using
the two bits. As a result, the only delay shared by the two
cycles is the VN output comparator and the check node.

B. Random number generation

The stochastic messages must be distributed such that their
mean represents the probability that the codeword bit is
0. Since the messages are generated from LLR values, the
thresholds are given by T

j

= ln(

1�P

P

), where P is uniformly
distributed on (0, 1). In addition, the threshold values must
be quantized. Simulation results have shown that an integer
quantization on the range [�6, 6] was sufficient. It would
seem natural to use a quantization that minimizes the mean
squared error, i.e. that minimizes E[(eT

j

� T

j

)

2

], e
T

j

denoting
the quantized value. However, simulations show that an error
that overestimates |T

j

| is more detrimental to the decoding
performance, and that the quantization e

T

j

= sign(T

j

)b|T
j

|c is
preferable.

Consider a priority encoder circuit that takes as input a
random binary sequence Z = {Z

1

, . . . , Z

q

} with Pr(Z

i

=

0) =

i

, and outputs the number W of “one” elements that
precede the first “zero” element. We use W and a fair bit
S to generate T

j

= (�1)

S

W . To obtain a range of [�6, 6],
we need q = 7, and a good approximation of the desired
distribution is obtained by setting

1

= . . . =

5

=

1

2

and

6

=

7

=

1

4

. Therefore it is easily seen that the random
threshold generation requires 10 fair random bits, 9 to generate

TABLE I
IDEAL AND IMPLEMENTED LLR THRESHOLD DISTRIBUTION

Threshold p (ideal) p (impl.)
-6 0.0025 0.0029
-5 0.0042 0.0039
-4 0.0113 0.0156
-3 0.0294 0.0312
-2 0.0718 0.0625
-1 0.1497 0.1339
0 0.4621 0.4995
1 0.1497 0.1339
2 0.0718 0.0625
3 0.0294 0.0312
4 0.0113 0.0156
5 0.0042 0.0039
6 0.0025 0.0029

Z, and 1 for S. We use a linear-feedback shift register (LFSR)
to generate the random bits. Table I gives the final distribution
of T

j

, taking into account that the all-zero sequence never
occurs in the LFSR, and that we set T

j

= (�1)

S when
Z = {1, 1, 1, 1, 1, 1, 1}.

Even though the RHS algorithm is derived by assuming that
the thresholds used in the VNs are independent, in practice,
simulations have shown that the random number generation
(RNG) components can each be shared with 64 VNs without
degrading the decoding performance. As a result, the RNG
components have little impact on the decoder area.

C. Tracker

Each variable node includes 6 tracker components that
receive the binary messages and update a stored LLR value.
The update is a linear approximation of (5) in the LLR
domain, given by (6) for m̂ = 0 and m̂ = 1 (using
f(⇤; 1) = �f(�⇤; 0)), and by (7) for m̂ =

1

2

. Identifying the
parameters a, b, c, d directly would be cumbersome. Instead,
we first simulate the decoder with the ideal tracking given by
(5) to identify the optimal parameter �. When � is optimized
to minimize the BER, the optimal value depends on the
maximum number of iterations performed by the decoder.
With a maximum of 50 iterations, the optimal � for the
10GBASE-T code is found to be 0.25.

We propose a circuit design methodology where we start
from a decoder using (5) and gradually introduce the changes
needed to produce an optimized implementation of the track-
ers. For some steps, we use Monte-Carlo simulations to find
the parameter values that optimize the performance. At this
stage of the design, the simulations can be performed at a
relatively high BER and the process is therefore not very
computationally intensive. The circuit design can be split in
four steps:

1) We first identify the range required for the tracker values
⇤

i

. Let ⇤

i

2 [�⇤

L

,⇤

L

]. We simulate the decoder to
identify the smallest ⇤

L

> 0 for which the decoder
retains a BER approximately equal to the ideal case.
For the 10GBASE-T code, we can use a value as low
as ⇤

L

= 3.
2) Next, we introduce the saturation operations associated

with parameters c and d. We can test whether it is

Fig. 3. Block diagram of the tracker update logic. The output “f” is fed to
the adder circuit of the VN.

possible to use the same absolute value for c and d.
For the 10GBASE-T code, it is indeed possible to use
c = �d = 1.

3) After the second step, we know the range over which to
optimize the choice of a and b. Parameter a is optimized
by minimizing

Z
c

�c

✓
a⇤� f

✓
⇤;

1

2

◆◆
2

d⇤, (10)

and parameter b by minimizing
Z

⇤L

d

(⇤+ b� f (⇤; 0))

2

d⇤. (11)

For ⇤

L

= 3, c = �d = 1, we obtain a = 0.73 and
b = 0.432.

4) As the last step, we find compact binary approximations
for a and b. For the 10GBASE-T code, we found that
a =

3

4

and b =

1

2

provide good performance.
Since the tracker is the component that has the most impact

on the area of the decoder, we then used a trial and error
process to find further simplifications to the circuit. We found
that it is possible to output only the integer part of the
tracker to the adder tree, thereby simplifying the adder. This
simplification in turn makes it possible to completely remove
the tracker update for m̂ =

1

2

and to only keep the saturation,
since the tracker output is now 0 whenever |⇤

i

(t)| < 1. The
update function for m̂ =

1

2

therefore becomes

⇤

i

(t) =

8
><

>:

⇤

i

(t� 1) if �c ⇤

i

(t� 1) c,
�c if ⇤

i

(t� 1) < �c,
c if ⇤

i

(t� 1) > c.
(12)

The optimized tracker architecture is shown in Fig. 3. The
size of the tracker register is 4 bits, and the output has 3 bits.

Another feature of the RHS algorithm is its ability to
dynamically change the parameter b in order to reduce the
average convergence time with little impact on the BER. This
tracker implementation supports b = 1 and b =

1

2

. We use
b = 1 in the first iteration.

D. Check node partitioning

The use of check node partitioning for improving the
layout efficiency of fully-parallel LDPC decoders was first
reported in [13], where it was shown to greatly reduce the area
required for the implementation after place & route. In min-
sum algorithms, partitioning is not possible without modifying
the algorithm, because the d

c

check node functions that must
be computed by a check node component cannot be factored
in terms of a total function. To remedy this, [13] proposes an
approximate algorithm that can be partitioned. Unfortunately,
this introduces a loss in error rate performance that grows with
the number of partitions. In contrast, BMP algorithms such as
RHS can be partitioned as is.

Partitioning allows dividing the decoder design in several
blocks that can be processed independently by the place &
route tool. The downside is that it also introduces additional
delay in the CN circuit that is associated with the distribution
of the total. If the CN is implemented using 2-input XOR
gates, for k partitions, k d

c

/2, the longest path in the CN
has a gate delay � given by

� = log

2

✓
d

c

k

◆
+ (k � 1) + 1, (13)

where we assume for simplicity that d

c

and k are powers
of 2. The first term represents the delay through the local
computation tree, the term (k � 1) represents the worst
distribution delay, and the last term is associated with the
computation of the extrinsic parity from the total. For example,
with d

c

= 32, a CN circuit with no partition has � = 6, while
a circuit with 8 partitions has � = 10, and a fully-partitioned
circuit (not described by (13)) has � = 31.

E. Early termination

Early termination (ET) refers to a mechanism that monitors
the decision output of all the variable nodes to detect a valid
codeword, allowing the decoder to stop before the maximum
number of iterations is reached. Early termination is crucial for
power saving: it reduces the switching activity of the decoder,
and it can also be used to put the decoder into a sleep mode
until the next frame is received.

To reduce the average decoding time as much as possible,
the early termination check is performed in parallel with the
message passing. To achieve this, we instantiate a second copy
of the check node circuits. These ET check nodes receive the
estimated bit from their neighboring VNs, and compute one
parity sum. If all the ET check nodes have even parity, we
have found a valid codeword and can stop the decoder. For
convenience, part of the ET logic is implemented in a group
of 64 VNs that are connected to all 384 CNs, as shown in
Fig. 2.

4 4.1 4.2 4.3 4.4 4.5 4.6
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

Eb/No [dB]

B
E

R

NMS 4−bit 100 iter (sw)
RHS bit−true−sw 50 iter
[15], 8 iter (no post−proc.)
[14], 4 iter
[13], 11 iter
[7], bit−true−sw, 400 iter

Fig. 4. Bit-error rate performance of the RHS decoder simulated using
a bit-accurate software model, compared to reported BER results for other
10GBASE-T decoders. The curve on the left shows normalized min-sum with
4-bit messages simulated in software, with a maximum of 100 iterations.

IV. PERFORMANCE

A. Methodology

Validation of the hardware implementation was performed
by means of functional simulation. Each component was
validated against a bit-accurate software implementation via
a thorough inspection of its operation, followed by the use
of random test vectors. The integration of the components
was then validated for the entire decoder using the same
methodology. The bit-accurate software models are also used
for software simulations of the decoder, which allows us to
quickly measure the performance of the decoder.

The ASIC implementation of our decoder uses TSMC 65nm
CMOS technology with 7 metal layers and a supply voltage of
1.0V. Synthesis was performed using Cadence RC, and layout
performed with Cadence Encounter. This implementation is
fully-parallel, and uses the early termination scheme described
in Section III-E. The input LLRs and VN trackers both use 4
bits of quantization.

B. Layout results

Initial place & route results were obtained for an unpar-
titioned architecture and for an architecture having 8 VN
partitions. The results were better for the 8-partition design,
and therefore it was chosen for the final layout. However, the
difference between the two designs was not as significant as
reported in [13]. This is reasonable, since the RHS interleaver
and check node function are already much simpler than in the
case of a Min-Sum decoder, and therefore they are less of a
bottleneck for the place & route.

After place & route the decoder occupies 4.41 mm2, with
a logic density of 94.4%. Under typical operating conditions,
the circuit achieves a clock frequency of 448 MHz. The layout

TABLE II
COMPARISON WITH OTHER WORKS

RHS [7] [13] [14] [15]
Process 65nm CMOS 90nm CMOS 65nm CMOS 90nm CMOS 65nm CMOS
Architecture Fully-parallel Fully-parallel Fully-parallel Part-parallel Part-parallel
Area {scaled to 65 nm} (mm2) 4.41 6.38 {3.33} 4.84 5.35 {2.79} 5.35
Maximum frequency (MHz) 448 500 195 137 700
Coded throughput (Gbps) 160 @ 5.5dB 61.3 @ 5.5dB 92.8 @ 4.55dB 11.7 (no ET) 47.7 @ 5.5dB

results are summarized in Table II, along with the results for
other 10GBASE-T decoders.

C. Decoding performance

We simulated the decoder with a maximum of 50 iterations.
As can be seen on Fig. 4, this is sufficient to achieve a BER
very close to the best results reported in other 10GBASE-T
decoders. With a limit of 50 iterations, the minimum clock
frequency such that the decoder achieves the latency required
by the standard is 317 MHz. The BER of RHS can be
improved significantly by increasing the maximum number of
iterations, but of course this also increases the minimum clock
frequency.

With our early termination mechanism, the average number
of iterations needed for decoding at 5.5 dB is 2.86. At
448 MHz, this translates to an average decoding time of
12.8 ns. The standard only requires that the latency be smaller
than 315 ns, and therefore the decoder would be idle 96%
of the time. By using techniques such as clock or power
gating, we can use the fast decoding time to save power. In
other applications, the RHS algorithm can be used to achieve
very high throughputs by adding buffering capability for the
received frames.

D. Comparison with existing decoders

Compared to other fully-parallel implementations, the pro-
posed implementation achieves higher throughput, with bet-
ter BER. Compared to [14], RHS achieves a much higher
throughput, but also requires more area. Compared to [15],
RHS achieves higher throughput for a smaller area. Note that
the design of [15] includes “post-processing” hardware and on-
chip functional testing, but the area without these modules is
quoted as 4.4 mm2, and therefore the area of the RHS decoder
remains similar if they are taken out.

V. CONCLUSION

In this paper we presented a decoder architecture based on
the RHS algorithm for the LDPC code included in the IEEE
802.3an 10GBASE-T standard. The decoder converges to the
transmitted codeword in only a few clock cycles on average,
which can be used to reduce the power consumption or to
reach very high throughputs (much higher than required by
the 10GBASE-T standard). We also showed that a decoder
based on the RHS algorithm is straightforward to design by
presenting systematic methods for identifying good parameter
values.

ACKNOWLEDGEMENT

The authors wish to thank CLUMEQ for providing comput-
ing resources, and CMC Microsystems for providing access to
the Cadence tools and TSMC 65nm CMOS technology. War-
ren J. Gross and Claude Thibeault are members of ReSMiQ.

REFERENCES

[1] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” IEEE Journal of Solid-State

Circuits, vol. 37, no. 3, 2002.
[2] A. Darabiha, A. Carusone, and F. Kschischang, “A bit-serial approximate

min-sum LDPC decoder and FPGA implementation,” in Proc. IEEE

International Symposium on Circuits and Systems, 2006.
[3] T. Brandon, R. Hang, G. Block, V. C. Gaudet, B. Cockburn, S. Howard,

C. Giasson, K. Boyle, P. Goud, S. S. Zeinoddin, A. Rapley, S. Bates,
D. Elliott, and C. Schlegel, “A scalable LDPC decoder ASIC architecture
with bit-serial message exchange,” Integration, the VLSI journal, 2008.

[4] K. Cushon, C. Leroux, S. Hemati, S. Mannor, and W. Gross, “A min-
sum iterative decoder based on pulsewidth message encoding,” IEEE

Trans. on Circuits and Systems II: Express Briefs, vol. 57, no. 11, pp.
893 –897, Nov. 2010.

[5] R. G. Gallager, Low-Density Parity-Check Codes. MIT Press, 1963.
[6] N. Mobini, A. Banihashemi, and S. Hemati, “A differential binary

message-passing LDPC decoder,” IEEE Trans. on Communications,
vol. 57, no. 9, pp. 2518–2523, Sept. 2009.

[7] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Man-
nor, and W. J. Gross, “Majority-based tracking forecast memories for
stochastic LDPC decoding,” IEEE Trans. on Signal Processing, vol. 58,
no. 9, pp. 4883–4896, 2010.

[8] V. Gaudet and A. Rapley, “Iterative decoding using stochastic compu-
tation,” Electronics Letters, vol. 39, no. 3, pp. 299–301, Feb 2003.

[9] F. Leduc-Primeau, S. Hemati, S. Mannor, and W. J. Gross, “Relaxed
half-stochastic belief propagation,” arXiv:1205.2428 (Submitted to IEEE

Trans. on Communications), 2012.
[10] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the

sum-product algorithm,” IEEE Trans. on Information Theory, vol. 47,
no. 2, pp. 498–519, Feb. 2001.

[11] “IEEE standard for information technology-telecommunications and
information exchange between systems-local and metropolitan area
networks-specific requirements part 3: Carrier sense multiple access
with collision detection (csma/cd) access method and physical layer
specifications,” IEEE Std 802.3an-2006 (Amendment to IEEE Std 802.3-

2005), 2006.
[12] S. Hemati and A. Banihashemi, “Dynamics and performance analysis of

analog iterative decoding for low-density parity-check (LDPC) codes,”
IEEE Trans. on Communications, vol. 54, no. 1, pp. 61–70, Jan. 2006.

[13] T. Mohsenin, D. Truong, and B. Baas, “A low-complexity message-
passing algorithm for reduced routing congestion in LDPC decoders,”
IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57, no. 5,
pp. 1048–1061, May 2010.

[14] A. Cevrero, Y. Leblebici, P. Ienne, and A. Burg, “A 5.35 mm2

10GBASE-T ethernet LDPC decoder chip in 90nm CMOS,” in Proc.

IEEE Asian Solid-State Circuits Conference, 2010.
[15] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “An

efficient 10GBASE-T ethernet LDPC decoder design with low error
floors,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 843–855,
2010.

