
Auto-Calibration Process for Mad Catz Fender
Mustang Pro-Guitar

Presented to
Prof. Pascal GIARD

Prepared by
Daniel NGUYEN

daniel.nguyen.1@ens.etsmtl.ca
École de technologie supérieure

Montréal, September 30, 2021

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Contents

1 Introduction 3
1.1 About Calibration . 3
1.2 Auto-Calibration Hardware . 3
1.3 Current State and Objective . 4

2 Background 5
2.1 Beagle USB 480 and Data Center Software . 5
2.2 Dolphin Emulator . 5
2.3 Mad Catz Fender Mustang Pro-Guitar . 5
2.4 Communication with the Guitar Dongle . 7

3 Sniffing the USB Traffic Using the Beagle USB 480 8
3.1 Hardware Setup . 8
3.2 Attempts to Sniff Data . 8

3.2.1 Failing Audio calibration . 9

4 Analyzing the Data 10
4.1 HID Report Mapping . 10
4.2 Audio Calibration Analysis . 11
4.3 Video Calibration Analysis . 12
4.4 Comparing the Control URBs . 14
4.5 Auto-Calibration Process Hypothesis . 15

5 Testing the Process 17
5.1 Unit Tests for Control URBs . 17
5.2 Proof of Concept Program to Reproduce In-Game Auto-Calibration 17

5.2.1 Software Implementation . 17
5.2.2 Test Results . 19

6 Conclusion and Recommendations 21

1/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Summary

As audio and video technology progressed, signal processing became more complex and time consuming. This pro-
cessing introduces a delay that must be compensated through calibration in order to play rhythm games that mandate
user interactions with high timing accuracy. As an attempt to automate the compensation process, the auto-calibration
feature appeared in 2008 with the release of Rock Band (RB) 2 and was present on all later versions of the game. The
feature simplified and refined the calibration process by having sensors integrated to the guitar controller. The sensors
replaced the need for players to take actions during the process which removed human error caused by anticipation,
stress to achieve accuracy and reaction time.

Rhythm games have seen a decline over the last few years and major developers are no longer releasing new
titles. Despite this, the hardware has been given a new life thanks to games such as Clone Hero. Clone Hero is a
PC-based rhythm game released in 2017 that supports various guitar controllers from different gaming consoles as
well as drums. Interest has been shown by the main developer of Clone Hero to implement auto-calibration. However,
the auto-calibration process is a black box and its inner workings are unknown. This project aims to understand how
the auto-calibration process works.

To our knowledge, the details about the auto-calibration process are still uncharted and we are not aware of any
other effort towards understanding its implementation. We therefore explored it in order to find out how it works from
a software and hardware point of view. In order to study the auto-calibration, data was captured between the emulated
console (host) and the dongle (device), then analyzed. The analysis allowed us to build a hypothesis and test it. A
complete program was created to reproduce the process as proof of concept (PoC). Our PoC proves that we understand
the auto-calibration process and are capable of re-creating it. This report will therefore describe our findings following
our exploration. With detailed analysis of the data collected, it is possible to implement the auto-calibration feature
and integrate the hardware into future works.

2/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Chapter 1

Introduction

The goal of this project is to understand the auto-calibration process for Rock Band (RB) guitar controllers that support
this feature in order to implement it into Clone Hero (CH). The understanding of the process will also allow makers of
custom guitar controllers to implement the same functionality. To comprehend the auto-calibration process, the data
exchanged between host and device is sniffed and analyzed. The term sniff refers to the process of monitoring and
capturing all data packets that are passing through a computer network using packet sniffers [1]. The captured data
allows us to deduce the sequence of events as well as the USB control messages required to perform the process.

This chapter explains the need for calibration, the hardware that is being calibrated, and the current state of affairs
with regards to what is known about the calibration process.

1.1 About Calibration
In the context of this project, the goal of calibration is to compensate for audio and video latency for newer televisions
and sound systems. As audio and video technologies progressed, signal processing became more complex and time
consuming. This lag created due to signal processing is not usually a problem when watching television, but becomes
an issue with video games. Modern televisions usually have a Game Mode which by-passes certain unessential video
processors in order to limit input lag [2]. Game Mode, although not available for all TVs, does help reduce input lag,
but for games that require a lot of precision, notably rhythm games, it is still greatly beneficial to calibrate audio and
video.

The calibration process can be performed manually where a player must press a button upon a visual or auditory
cue. This method introduces human error due to lack of consistency and precision. The auto-calibration feature was
first released in 2008 with RB2. The guitar controller was capable of auto-calibrating using new hardware integrated
inside. This new hardware is common to many following iterations of guitar controllers and most probably works in
the same way.

The auto-calibration process is similar to the manual one, but without human error. In fact, it still uses auditory
and visual cues, but instead of a player pressing a button as a response, the controller responds automatically. The
auto-calibration consists of a two-step process. The first is the audio calibration where a chirp is generated every half-
second by the game and is “heard” by the guitar controller through a microphone. Once the audio calibration is done,
the video calibration follows, where the screen flashes white at regular intervals, and once again, the guitar controller
“sees” the flashes through what appears to be a light sensor. The following section discusses hardware found on the
guitar controllers.

1.2 Auto-Calibration Hardware
The RB2 guitar controllers were the first to implement auto-calibration. They were equipped with two sensors : a
microphone and a light sensor. The microphone picked up the chirps during audio calibration and the light sensor
detected the white flashes from the screen during video calibration. Figure 1.1 presents the location of the light sensor
and the microphone.

3/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Figure 1.1: Calibration hardware present on some RB guitars, where (1) the light sensor
and (2) microphone are highlighted [3]

RB guitar controllers released after 2008 were all equipped with these sensors to allow auto-calibration. The
sensors appear to be the same from RB2 through to RB4. For this project, the Mad Catz Fender Mustang Pro-Guitar
is used and it is very likely that the process and data found will apply for other guitar controllers as well. However,
this remains to be verified using different guitar controllers over the different platforms and is out of the scope of this
project. The successful completion of this project will allow the auto-calibration feature to be implemented to Clone
Hero and allow players with supported hardware to take advantage of the feature. Moreover, this project will enable
creators of guitar controllers to integrate the same hardware to their designs and incorporate the auto-calibration feature
as well. The following section discusses how things were at the beginning of this project and the main objective.

1.3 Current State and Objective
There is no information available with regards to the auto-calibration process. The process is a black box and needs to
be discovered using data sniffing. The main objective of this project is to understand how the auto-calibration process
works to enable an implementation of it in CH. In order to achieve the main objective, the project is divided into 3
secondary objectives:

• O1: Sniff the data between the console and the dongle during the auto-calibration process

• O2: Analyze the data to understand how the auto-calibration process works

• O3: Create a userspace program to mimic the auto-calibration process

Outline

In the remainder of this report, chapter 2 provides the necessary background information required to understand the
project. It presents the tools used throughout and important information about the USB protocol. Next, chapter 3
describes the steps taken to achieve O1 using the Beagle USB 480 Protocol Analyzer [4]. It explains the physical setup
and emphasizes the obstacles encountered. Chapter 4 discusses the analysis of the data to accomplish O2. Specifically,
it looks at the mapping and significance of the captured data with regards to the process to build hypotheses. Lastly,
chapter 5 addresses the tests performed to verify the hypotheses through unit tests and a proof-of-concept userspace
program to achieve O3. It explains the software implementation and the test results. Lastly, we close this report with
concluding remarks and recommendations for future works in chapter 6.

4/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Chapter 2

Background

In this chapter, the hardware and software tools, the emulated host, and the device are presented in detail. The tools
used for data sniffing are the Total Phase Beagle USB 480 Protocol Analyzer and the Data Center software included
with the analyzer. The emulated host is the Dolphin Emulator and the device is, as previously mentioned, the Mad
Catz Fender Mustang Pro-guitar. The USB protocol, specifically the control and interrupt transfers, are also presented
in order to better understand the analysis done in chapter 4.

2.1 Beagle USB 480 and Data Center Software
The Beagle USB 480 Protocol Analyzer [4] is made by Total Phase and is a device capable of capturing and interac-
tively displaying Hi-Speed USB bus states and traffic in real time. The Data Center software [5] is a graphical user
interface (GUI) for the Beagle analyzer. It parses and displays the captured data in blocks that are managed and easier
to analyze. The software is proprietary and cannot be used in conjunction with other hardware USB analyzers. In
fact, the software must detect a compatible device to connect with in order to function. It therefore can only see data
coming from the Beagle. With the tools used for data sniffing presented, the next section discusses the host : Dolphin
Emulator.

2.2 Dolphin Emulator
Dolphin [6] is a free and open-source video game console emulator for Nintendo GameCube and Wii that runs on
Windows, Linux, MacOS, and Android. For this project, the emulated console is the Nintendo Wii. It could have
been possible to use a real Nintendo Wii console instead of an emulated version, but in our case, it was simpler to
emulate due to the challenges of working remotely. Auto-calibration is supported by all RB games except the first and
any of those could have been used to observe the auto-calibration process. However, the guitar controller studied is
compatible only with RB3. In fact, neither RB2 nor RB4 had charts for the pro-guitar. With a better understanding of
the host, the following section presents the device : Fender Mustang Pro-Guitar.

2.3 Mad Catz Fender Mustang Pro-Guitar
The Pro-Guitar is right on the line between toy and instrument. Contrary to other previous guitar controllers that had
5 or 6 buttons to represent the frets, the Fender Mustang has 17 frets covering all 6 strings which are represented by
102 individual buttons on the neck. Moreover, instead of a simple strum bar, the Pro-Guitar has 6 strings that must
be picked which makes it very similar to a real guitar. In fact, the guitar controller comes with a musical instrument
digital interface (MIDI) out port which can be wired and used as a MIDI controller. Figure 2.1 presents the Pro-Guitar
in a comparison with fig. 2.2, a standard RB3 guitar controller.

5/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Figure 2.1: Mad Catz Fender Mustang Pro-Guitar

Figure 2.2: Rock Band 3 Standard Guitar

6/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

2.4 Communication with the Guitar Dongle
The wireless dongle communicates using the USB protocol. The USB protocol transfers messages known as USB
request blocks (URBs). There are 4 types of URBs possible within the USB protocol : control, interrupt, isochronous
and bulk. For this project, the control and interrupt types are the two used because the dongle is recognized as human
interface device (HID) class. These two types also take into consideration the direction using IN and OUT, where IN
types request data back from the device to the host and OUT types send data to the device from the host.

When a device is an HID class, the host periodically polls the device for its status in the form of an HID report
sent as data through an IN interrupt transfer. The report varies in size depending on the device and its configuration.
In our case, the HID report is 27 bytes long and gives information about all the buttons, switches, and sensors as will
be shown in section 4.1.

The control transfers are used for command and status operations. In other words, it can be used to control the
hardware. A control transfer is a multi-part message and requires a setup packet which details the type of request.
Figure 2.3 illustrates the three transactions: setup, data, and status that build a control transfer. Each transaction
contains three types of packets: token, data and handshake. The setup transaction’s data packet is commonly called
the setup packet and will be analyzed in section 4.4.

Figure 2.3: Breakdown of the 3 transactions that constitute a control transfer [7]

The setup packet is 8 bytes long and contains information such as : bmRequestType, bRequest, wValue, wIndex,
and wLength. bmRequestType and bRequest are single bytes and the other 3 fields are 16-bit little-endian values
(e.g. if wLength = 8 (in decimal), then wLength = 0x0800).

It is important to remember that the hardware used in the guitar controllers are the same since RB2. Therefore, we
expect that the control URBs found during this project will apply for all guitar controllers. It is however possible that
the control URBs differ between platforms and more sniffing must be performed with other guitars on other consoles
to validate. Again, proving this hypothesis is beyond the scope of this project.

7/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Chapter 3

Sniffing the USB Traffic Using the Beagle
USB 480

In this chapter, the hardware setup is presented and the attempts at sniffing data are performed. Obstacles encountered
and solutions to those obstacles are discussed thoroughly in order for the data collection to be repeated if required.

3.1 Hardware Setup
Before any test is performed, it is necessary to verify that the hardware and software function as they are supposed to.
Therefore, the Wii USB dongle is plugged directly into the PC and setup to work within the emulator. As confirmed
by the Wiki page [8], the pro-guitar is supposed to function using the USB passthrough. The steps from the Wiki are
followed for Linux and the pro-guitar tutorials were performed to confirm functionality. Knowing that the hardware
and software operate, the next step is to prepare for data capture. Figure 3.1 presents the hardware setup used for data
sniffing.

Beagle USB 480

Pro-Guitar
USB Dongle

Device
MITM

PC

Pro-Guitar
ControllerUSB Analysis

Software

Dolphin Emulator
(Host)

Figure 3.1: Sniffing setup using the Beagle USB 480 as a man-in-the-middle (MITM)

The Beagle 480 operates as a MITM where it allows data to flow between host and device, whilst allowing data
analysis. With this setup, the analysis PC and host are the same device. Therefore, both USB ports of the Beagle are
connected to the PC. One is used for the collecting and analyzing the data sniffed, and the other is as the host for the
dongle.

3.2 Attempts to Sniff Data
The data is captured throughout the entire auto-calibration process that is performed within the RB3 game. The process
begins with the sound calibration and once that is completed successfully, the video calibration can be performed. The
first obstacle was to successfully complete the audio calibration and is discussed in the next subsection.

8/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

3.2.1 Failing Audio calibration
During the first attempt to sniff the data, it was very difficult to complete the audio calibration. In fact, the audio
calibration failed most of the time. Figure 3.2 presents the displayed message from the game informing the user that
the audio calibration failed and therefore the video calibration could not be started.

Figure 3.2: Audio calibration failure message

This message suggests that there is echo making it impossible to obtain a reliable audio reading. The first attempt
is performed using a 3-speaker setup with two lateral speakers and a central one. It is possible that this multi-speaker
setup is causing echo. In order to remedy this situation, audio balance is shifted to one side (left) and the central
speaker is unplugged. Another attempt is made using this single-speaker setup.

The second attempt also failed with the same message. Since the message suggested to lower the volume, the
volume is lowered and another attempt made. Slight modifications to the volume and the position of the guitar with
regards to the speaker were made and the audio calibration repeated. Out of the nearly 80 attempts, the audio calibra-
tion only succeeded twice. The first time, data sampling was not started and thus no data was obtained. However, the
successful completion of the audio calibration proved that it was in fact possible, but that the process is sensitive. It
is possible that the microphone is not functioning optimally due to being nearly 11 years old despite that it is newly
unboxed or that the host was not emulating the auto-calibration procedure correctly. Regardless, pinpointing the prob-
lem is beyond the scope of this project. The second successful attempt was fully captured and all data from the audio
calibration and the video calibration were retrieved. With the data in hand, the next step is to analyze the data and
understand what is happening. The following chapter discusses data analysis.

9/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Chapter 4

Analyzing the Data

In this chapter, the captured data is analyzed in order to understand how the auto-calibration process works. The first
section discusses the information sent by the dongle (device) to the console (host). The second discusses the audio
calibration, while the third section discusses the video calibration.

4.1 HID Report Mapping
In order to analyze the data, it is important to remember that the wireless dongle is recognized as an HID class
which means that, upon request, it periodically sends HID reports to the host. These HID reports are 27 bytes in
size and contain the state of the device, e.g., whether a button is pressed, a string is picked, the guitar tilted. Most
of the mapping has already been done by Jason Harley’s work to create a MIDI output using the wireless dongle [9].
Figure 4.1 presents a graphical mapping of the HID reports according to Harley’s code and our own testing using
jstest-gtk and the Beagle 480 analyzer. We confirmed the mapping done by Harley and pushed the analysis further
by mapping the D pad vector and testing the range of the Fret and Velocity vectors.

D pad
(Bits 3:0)

Fret[1]
(Bits 4:3)

Fret[2]
(Bits 4:0)

Fret[5]
(Bits 4:0)

Fret[4]
(Bits 4:3)

Fret[4]
(Bits 2:0)

Velocity[0]
(Bits 6:0)

Velocity[3]
(Bits 6:0)

Velocity[5]
(Bits 6:0)

Velocity[4]
(Bits 6:0)

Fret[3]
(Bits 4:0)

Velocity[1]
(Bits 6:0)

Velocity[2]
(Bits 6:0)

Fret[1]
(Bits 2:0)

Fret[0]
(Bits 4:0)

Byte 0 Byte 1 Byte 2

Byte 5

Byte 7Byte 8

Byte 9 Byte 10 Byte 11

Byte 12 Byte 13 Byte 14

2 B A 1 HOME + -

Byte 6
012367 5 4

7 6 5 4 3 2 1 0

1234567

1234567

1234567 1234567

1234567

1234567

1234567

1234567 1234567

0

0

0

0

0

0

0

0

0

1234567 0

1234567 0

Figure 4.1: Mapping of HID report bytes

A few things are important to note in fig. 4.1. The white squares, in the top row, are single bits that represent
buttons. The Pro-Guitar is for the Wii U and therefore uses buttons A, B, 1, 2, +, -, and HOME. These buttons can
also be associated to their PlayStation counterparts Cross, Circle, Square, Triangle, Start, Select and PS buttons,
respectively. The dark grey represents unknown mapping areas that were not explored and do not hold important
information with regards to this project. Also, the light grey areas represent vectors of multiple bits. It is important to
notice that the positions of bytes 5 and 6, as well as bytes 8 and 7, are inverted in our representation for clarity. Next,
the D pad has 9 possible states represented over 4 bits from 0000 (state 0) to 1000 (state 8). Figure 4.2 presents each

10/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

D pad state in the form of bit vectors. Note that at the idle position, the D pad is in state 8.

R

0001

0011

U

D

L

0000

0010

0100

0110

0101

0111

1000

Figure 4.2: D pad mapping

The nomenclature “Fret” and “Velocity” reflect the choices made by Harley in his code and are preserved. The
Fret signals are 5-bit vectors ranging from 0 to 17 (in decimal) that correspond to the fret number of a given string.
For example, if a player is pressing on fret 17 of string 0, Fret[0] = 0b10001. Similarly, if no fret is pressed, Fret[0] =

0b00000. However, if both fret 3 and fret 17 are pressed on string 0, then Fret[0] = 0b10001. The higher fret number
takes priority because it is closer to the pickup which is the device that captures the mechanical vibrations. On a real
guitar, the note depends on the length of the string that vibrates and is bound by its shortest distance. The Velocity
signals are 7-bit vectors ranging from 22 to 125 (in decimal) that represent string velocity or in simpler terms, how
hard a string is plucked. When first powered on, the velocity vectors start at 0. Once a string is picked with enough
force to enter the allowed range, it no longer returns to 0 until powered off.

Harley also mapped other features such as Pedal and Overdrive which are not important for this project and are not
displayed in fig. 4.1 for clarity. Lastly, we notice through testing that bytes 15, 16, and 17, which were never mapped
by Harley, are associated with the tilt sensor. Those three bytes are exactly the same and transition at the same time as
the controller tilts. This repetition of tilt data is unexpected at first, but is explained. In fact, byte 15 is used for audio
calibration and byte 16 is used for video calibration. The following section analyzes the audio calibration data and the
role of byte 15.

4.2 Audio Calibration Analysis
The next 3 figures are screenshots taken from the Data Center software application which provides information about
each URB. The information, from left to right, is the Index, timestamp (m:s.ms.us), length (Len), error (Err), device
number (Dev), endpoint (EP) number, type (Record) and HID report data (Summary). The figures are presented in
chronological sequence and are the important moments of the audio calibration process. When the process begins, the
user is asked to press the A button. Based on the mapping illustrated in fig. 4.1, it is possible to quickly seek the byte
change that represents button A being pressed. In fact, we know that the change is on bit 1 of byte 0 and therefore
we expect to see 0x02. Figure 4.3 presents the moment when button A is pressed to begin the audio calibration,
emphasized by the blue rectangle.

Figure 4.3: USB packets exchanged between the host and the device, where HID reports show
button A pressed (in blue) that triggers the submission of 6 control URBs (in green)

11/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

As expected, byte 0 of the Summary column transitions from 0x00 to 0x02 which is when A is pressed at index
319 (in blue). We observe that soon after the audio calibration is started, there are 6 control URBs that are sent to the
dongle (in green) from the emulated console. As we continue looking at the data, Figure 4.4 shows byte 15 (in orange)
of the HID report transitioning to 0x3F. It comes as no surprise that byte 15 is used to contain the information since it
was repeating tilt data and was redundant.

Figure 4.4: USB packets exchanged between the host and the device, where HID reports
show the chirp being detected (in orange)

The transition from 0x7F to 0x3F and back again repeats periodically. We suppose that these transitions represent
the microphone capturing the chirps. The number of transitions are counted and compared to the amount of chirps
present during the audio calibration process. The numbers are the same (24 chirps and 24 transitions), and it is
therefore logical to assume that our hypothesis is correct. As we continue looking at the data, we notice that the A
button is pressed again, followed by another 6 control URBs. The A button was pressed after the audio latency was
calculated and displayed in order to continue to the video calibration. Figure 4.5 shows button A being pressed (in
blue) and the 6 control URBs (in green).

Figure 4.5: USB packets exchanged between the host and the device, where HID reports show
button A pressed (in blue) that triggers the submission of 6 control URBs (in green)

The assumption is that the first set of control URBs illustrated in fig. 4.3 activates the microphone which is usually
off and allows the sensor to “hear” the chirps and report them back through the HID reports. The second set of control
URBs illustrated in fig. 4.5 presumably turns off the microphone. We notice, when comparing both sets of control
URBs that only one byte changes. When microphone is activated, byte 7 of control glsurb 1 of 6 is 0x02 and when it
is deactivated, the byte is 0x00. These assumptions will be tested in chapter 5. With the audio calibration complete,
the video calibration is next.

4.3 Video Calibration Analysis
Similarly to the audio calibration, the 3 following figures are screenshots of the important moments of video calibration
presented in chronological order and taken in the Data Center software. The A button is pressed to start the video

12/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

calibration. Figure 4.6 presents the button being pressed (in blue) as well as the 6 control URBs (in green) that we
assume activate the light sensor. We notice that byte 16 becomes 0x00 (in orange) moments after the control URBs
are sent. As we saw for audio calibration and its use of byte 15, we see similarly that byte 16 is used during video
calibration.

Figure 4.6: USB packets exchanged between the host and the device, where HID reports show
button A pressed (in blue) that triggers the submission of 6 control URBs (in green)

and the initialization of the light sensor (in orange)

Figure 4.7 shows the transition of byte 16 (in orange) that represents the light sensor “seeing” the white screen
flash. It is interesting to note that the transition begins at 0x00 which is the initial state (a black screen) and increases
gradually through 0x14, 0x28, 0x32, and 0x3C (peak intensity) before it decreases again. This shows that the light
sensor measures intensity and may give a false latency if the test is performed in a well-lit room. It is recommended
to perform video calibration with the light dimmed.

Figure 4.7: USB packets exchanged between the host and the device, where HID reports
show the screen flash being detected (in orange)

Contrary to the audio calibration that sampled 24 chirps, the video calibration samples 39 screen flashes in order
to calculate the latency. Once the latency is calculated and displayed on screen, the A button is pressed to confirm the
end of the process and 6 control URBs are expected to deactivate the light sensor. Figure 4.8 presents the A button
being pressed (in blue) and the 6 control URBs (in green).

13/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Figure 4.8: USB packets exchanged between the host and the device, where HID reports show
button A pressed (in blue) that triggers the submission of 6 control URBs (in green)

Similarly to the control URBs seen in audio calibration, when we compare the two sets of video calibration control
URBs, we notice that only byte 7 of the first URB changes. It is 0x01 when activating the light sensor and 0x00 when
deactivating it. The following section compares the 4 sets of control URBs in preparation of testing the hypotheses.

4.4 Comparing the Control URBs
As mentioned in the previous section, we suspect that the 4 sets of control URBs perform the following tasks : activate
microphone, deactivate microphone, activate light sensor, and deactivate light sensor. In this section, we will analyze
the setup packets and the data of each URB and compare them.

It is important to note that for each set, the first 5 URBs are OUT types. This means that the data is sent from
Dolphin Emulator (host) to the USB dongle (device). The last URB is an IN type which means that the device is
sending data back to the host.

The OUT setup packets, as described in section 2.4, are all identical: 21 09 00 03 00 00 08 00, where

• bmRequestType: 0x21 (Host-to-device, Class, Interface);

• bRequest: 0x09;

• wValue: 0x0300;

• wIndex: 0x0000;

• wLength: 0x0008.

Reminder: The w fields are 16-bit little-endian values.

As previously mentioned, the 5 OUT URBs contain nearly the exact data. When comparing fig. 4.3, fig. 4.5, fig. 4.6
and fig. 4.8, only byte 7 of the first URB changes. That byte dictates which sensor gets activated or deactivated. When
the byte is 0x02 (bit 1 is true), the microphone activates. When the byte is 0x01 (bit 0 is true), the light sensor acti-
vates and when it is 0x00, the sensors are deactivated whether it is the microphone or the light sensor. Considering this
information, we verified if it was possible to activate both sensors at the same time in order to perform audio and video
calibration simultaneously. When sending the activation URBs with byte 7 = 0x03 (bit 0 and 1 are true), neither the
microphone nor the light sensor respond to stimuli. Something prevents both sensors from being active simultaneously.

The IN setup packet are also identical: A1 01 00 03 00 00 1C 00, where

• bmRequestType: 0xA1 (Device-to-host, Class, Interface);

• bRequest: 0x01;

• wValue: 0x0300;

• wIndex: 0x0000;

14/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

• wLength: 0x001C.

The IN URBs data is the response of the device to confirm whether or not it was capable of activating or deactivat-
ing the sensors. We notice that when a sensor is activated, the response is all 0x00 and upon deactivation, the response
is different. The response data is NOT the calculated latency. We suppose that the latency is calculated by the game.
The following section explains what we expect is the complete process and how the latency is calculated.

4.5 Auto-Calibration Process Hypothesis
The auto-calibration process consists of 18 steps as illustrated in Figure 4.9 as well as enumerated below.

1. Auto-Calibration

2. Audio Calibration

3. Activate
Microphone

4. Generate chirp

5. Controller
responds to chirp

8. Calculate average
and display

9. Deactivate
Microphone

A

7. samples
< 24

samples = 24

10. Video Calibration

11. Activate Light
sensor

12. Flash white
screen

13. Controller
responds to flash

16. Calculate average
and display

17. Deactivate Light
sensor

18. End

A

A
A

6. Calculate latency
14. Calculate latency

15. samples
< 33

samples = 33

Figure 4.9: Diagram of the hypothesized auto-calibration process

15/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Step description:

1. User chooses to perform auto-calibration and begins with Audio calibration.

2. Game displays audio calibration menu and asks an input button to begin.

3. User presses button to start process which triggers the “Activate microphone” control URBs.

4. Game generates a chirp, saves time of chirp and waits for HID report.

5. Guitar controller “hears” chirp and byte 15 of HID report changes.

6. Game witnesses byte change, saves time, calculates the time difference and saves into an array.

7. Steps 4 to 6 are repeated every 500 ms and 24 times in total.

8. Game calculates the average of 24 samples, displays audio latency and asks user to press button to continue.

9. User presses button to continue to video calibration which triggers “Deactivate microphone” control URBs.

10. Game displays video calibration menu and asks an input button to begin.

11. User presses button to start process which triggers the “Activate light sensor” control URBs.

12. Game flashes a white screen, saves time of flash and waits for HID report.

13. Guitar controller “sees” flash and byte 16 of HID report changes.

14. Game witnesses the byte change, saves time, calculates the time difference and saves into an array.

15. Steps 12 to 14 are repeated every 500 ms and 33 times in total.

16. Game calculates the average of 33 samples, displays video latency and asks user to end process by pressing a
button.

17. User presses button to end auto-calibration which triggers “Deactivate light sensor” control URBs.

18. End of process

While analyzing data captures of failed audio calibrations, which were causing issues and preventing continuation
to the video calibration, we noticed that the HID reports showed missing chirp detection despite the chirp being
generated. It is possible that audio calibration fails when a certain amount of chirps are missed. Our findings show
that if 3 or more chirps are missed, the audio calibration fails and displays the screen shown in fig. 3.2. With the
captured data analyzed and the hypothetical process present, it is now necessary to test. The next chapter discusses the
necessary tests performed to validate the hypothesis.

16/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Chapter 5

Testing the Process

In this chapter, the hypothetical process is validated in two parts. First, the 4 sets of control URBs are individually
tested in userspace in order to prove that they do in fact activate and deactivate the sensors. Then, a full program that
mimics the auto-calibration process and calculates the latency is created as a proof of concept (PoC).

5.1 Unit Tests for Control URBs
Before creating a full program as proof of concept, it is important to validate parts of the hypothesis. More specifically,
the sets of control URBs that are supposed to activate and deactivate the sensors. The activation and deactivation is
tested in C language using the libusb library [10] which is a cross-platform user library to access USB devices and the
Beagle running as a MITM.

Before activating the sensors, tests are performed to verify that the guitar controller does not respond to chirps nor
to flashes of light in its initial state. These two tests are performed as follows. In order to test the microphone, a sample
of the chirp is required. Using OBS [11], a short video clip is recorded of the chirp sound during the auto-calibration
process in RB3. Then, the sound clip is trimmed using Audacity. This way, the chirp can be played manually. To
simulate the screen flashes, a flashlight is used. With the Beagle setup for MITM, the jstest-gtk program is run in
order to monitor HID reports. The chirp is played and there is no change on byte 15. The flashlight is shined on the
light sensor and there is no change on byte 16. Using libusb, a code sends the set of control URBs to the dongle to
activate the microphone. The chirp is played and changes can be seen on byte 15. The deactivation set is sent to the
dongle and chirps replayed. There are no more changes to byte 15. The light sensor activation set of control URBs are
then sent to the dongle. As expected, byte 16 changes when light is shined onto the sensor. The deactivation set is sent
once again, light is shined on the sensor, and no changes detected. This confirms our hypothesis about the nature of
the control URBs that activate and deactivate the sensors. This information is key to being able to calculate the audio
and video latency. With the control sets validated, the next step in testing is to create a proof of concept and this is
discussed in the next section.

5.2 Proof of Concept Program to Reproduce In-Game Auto-Calibration
In this section, a proof of concept is created in the form of a program that mimics the complete auto-calibration
process. The program must be able to generate the chirp, cause the screen to flash white, monitor the HID reports of
the device in order to detect when the cues are sensed, and calculate latency. The following subsections will go over
the framework used, the software implementation and the test results.

5.2.1 Software Implementation
The Qt framework [12] was chosen to create the proof of concept due to its ease of development and the availability
of documentation, tutorials, and how-to videos. Qt uses the C++ language which allows integration of the unit tests
written in C using the libusb library and makes the creation of a GUI simpler.

17/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

The software implementation is done in 3 parts : the GUI, the guitar_controlmodule and the calibration thread.
The GUI is the main thread that displays all instructions to the user. The calibration thread runs in parallel to the GUI
thread and handles each step of the calibration process including the activation and deactivation of sensors using the
guitar_control module, the generation of audio and video cues, and the responses to the cues retrieved through
USB. Each part is briefly described below and the complete code can be retrieve at the GitHub repository [13].

The GUI

As illustrated in fig. 4.9, steps 2, 8, 10, and 16 correspond to the GUI since those steps display the instructions to guide
the user throughout the auto-calibration process. Step 12 is also performed using the GUI, where the screen flashes by
changing the background color from black to white and back to black. Figure 5.1 presents the GUI.

Figure 5.1: the GUI created using Qt framework

The Guitar_Control Module

The guitar_control module is completely written in C language and uses the libusb library and the data retrieved
in the control URBs sets (fig. 4.3, fig. 4.5, and fig. 4.6 to activate and deactivate the sensors. Three public functions
are provided by this module : mic_on(), light_on(), and turn_off_sensor().

The Calibration Thread

The calibration thread is present at all steps illustrated in fig. 4.9 since it controls the GUI, accesses the USB device and
performs the calculations. Figure 5.2 graphically explains how the calibration thread controls the GUI, uses functions
from the guitar_control module, and accesses the wireless dongle.

18/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Initialize libusb

Open Device

Reset Sensors

Device
 Found

Device NOT
 Found

Audio Calibration

Start Audio
Calibration

Save Start Time
PlaySoundEffect()

Wait For Response
Using Do-While Loop

Save End Time
Calculate Difference

Response Seen

Calculate Average

User Presses A

User Presses A

Video Calibration

Start Video
Calibration

Save Start Time
Emit Flash

Wait For Response
Using Do-While Loop

Save End Time
Calculate Difference

User Presses A

Calculate Average

Release Interface

User Presses A
Sample = 10?

Yes

No

turn_off_sensor()

mic_on()

turn_off_sensor()

light_on()

turn_off_sensor()

Calibration Thread

LEGEND :
Guitar Control

Module

Load GUI Start

GUI Thread

Display Error

Sample = 10?

Response Seen No

Yes

Display Audio
Instructions &
Ask For Input

Display Audio
In Progress

Increase Progress
Bar

Display Audio
Average &

Ask For Input
End

Display Audio and
Video Latencies

Display Video
Average &

Ask For Input

Change Background
to Black & Increase

Progress Bar

Change Background
to White

Display Video
In Progress

Display Video
Instructions &
Ask For Input

Figure 5.2: Flowchart of the complete PoC process

5.2.2 Test Results
A video demonstration of the PoC is hosted on YouTube [14] and validates our process hypothesis illustrated in fig. 4.9.
The program is designed to reproduce the auto-calibration process by generating cues, retrieving the responses to
those cues by the guitar controller sensors, and calculating the latency between generation and detection. However,
inconsistencies with the latency readings are noticed. In fact, when running an auto-calibration test requiring 30
samples, there are often inconsistent values that are too low compared to the others. These inconsistent values are
more present during audio calibration compared to video calibration. During audio calibration, we notice that the
majority of the calculated latencies are around 140 ms, but that certain values are inconsistent by being closer to 23 ms.
Sometimes there is only 1 out of 30, but other times there may be up to 9 of 30 for audio calibration, whereas video
calibration rarely has more than 2 inconsistent values. Table 5.1 presents a test where there are 9 inconsistent values
which strongly skew the average during audio calibration and a single inconsistent value during video calibration.

19/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Audio Calibration Sample Latencies (ms) Video Calibration Sample Latencies (ms)
158.633007 143.876325 23.859136 110.696888 131.913086 107.808037
191.901229 23.809450 143.975724 107.895114 107.902349 131.873441
167.845131 143.979644 23.745251 107.886857 107.913446 131.869990
23.904819 23.886229 143.941074 107.922037 131.860652 131.886627

143.787850 143.956902 119.813131 107.893265 107.871075 131.874811
23.93116 143.896576 23.859855 131.948929 107.928960 107.902601

119.797258 143.888313 143.937071 107.912994 131.811480 107.922111
119.870079 23.879026 23.909264 107.751512 131.870989 131.977023
167.860203 167.958959 143.939182 83.792729 131.882422 131.814163
119.784581 119.892269 143.885303 107.869224 107.872227 107.882710

Table 5.1: Audio and video sample latencies for a sample size of 30 with inconsistent values (in red)

We suspect that these inconsistent values are due to the implementation of the PoC. The manner through which we
poll for HID reports may be causing a report to be queued and waiting to be read which would explain the very short
latency. We could explore other strategies to read the /glshid reports with the aim to maximize accuracy. That way,
there can be no reports queued. It is also possible that what we consider to be the inconsistent values are in fact the
correct latency, while those superior to 100 ms are actually affected by high latency due to using the QtSoundEffect
class, although it is the class that offers lower latency compared to the QtMultimedia class. We could explore the
use of an audio framework, outside of Qt, that is geared towards low latency. Another possible cause may be due to
faulty hardware. Although the guitar controller was brand new in box, the hardware was manufactured over 10 years
ago, and the sensors may have become defective over time. In fact, faulty hardware is very likely when we consider
how difficult it was to complete audio calibration as mentioned in section 3.2.1. This could be tested by running the
PoC with another guitar controller that has no issues with the real in-game audio calibration. Either way, whether the
inconsistent values are from the hardware or the software implementation, we expect that when properly implemented
into a game, these inconsistencies can be reduced or eliminated.

If the hardware is faulty, then we expect that other hardware will not have the inconsistent values. If the inconsis-
tent values are still present when implemented correctly, the effects may be reduced by changing the algorithm that
calculates the estimated latency. The PoC calculates the average of all samples which makes it very sensitive to incon-
sistent values. A possible solution would be to trim the highs and lows before calculating the average, or to calculate
the median instead of the mean.

20/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Chapter 6

Conclusion and Recommendations

Conclusion
In this report, we presented the steps performed to understand the auto-calibration process for the Mad Catz Fender
Mustang Pro-Guitar for Nintendo Wii which was unknown until this point. We studied the auto-calibration process
through captured data and successfully described and confirmed how the auto-calibration process works, both from a
software and hardware point of view. As a result, we have the means to implement the auto-calibration feature into
applications such as Clone Hero. At the same time, our understanding of the process enables custom-guitar makers to
create hardware that supports auto-calibration and that are compatible with the original games.

Recommendations
1. Verify that the auto-calibration hardware works the same on other models

This project was carried out using the Mad Catz Fender Mustang Pro-Guitar for Nintendo Wii. While the
calibration hardware appears the same across controllers, other functional areas have shown us that there can be
subtle variations that need to be accounted for, e.g., it’s plausible that the sensor activation bits may be mapped
to a different location or that different control transfer sets are required to activate the hardware.

2. Verify if other guitars also show a great variance in the latency measurements
We noticed inconsistent latency measurements especially during audio calibration. These inconsistencies appear
to be caused by our controller and therefore checking other controllers will help pinpoint the source of the
inconsistent values.

3. Explore other strategies to take the measurements with the aim of maximizing accuracy
The inconsistent latency measurements may also be caused by the implementation of the PoC and could poten-
tially be reduced or eliminated by changing the strategies used to measure latency, to generate the cues, and to
detect the cues.

21/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Acknowledgement

I gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).
I would like to thank my mentor, Professor Pascal Giard, for allowing me this opportunity to step out of my comfort
zone and for inspiring me to pursue my studies beyond my purview. Your support and belief in me were instrumental
in the success of this project.

22/23

Auto-Calibration Process for Mad Catz Fender Mustang Pro-Guitar Daniel NGUYEN

Bibliography

[1] EC-Council, What are sniffing attacks and their types? EC-Council Official Blog, Jun. 2020. [Online]. Avail-
able: https://blog.eccouncil.org/what- are- sniffing- attacks- and- their- types/#:~:
text=Sniffing%20is%20the%20process%20of (visited on 06/03/2021).

[2] A. Perry, What is game mode on your TV and should you use it? 2021. [Online]. Available: https : / /
mashable.com/article/what-is-game-mode-tvs/ (visited on 02/18/2021).

[3] D. Wilson, Automatic calibration, 2008. [Online]. Available: https://www.anandtech.com/show/2648/3
(visited on 10/24/2008).

[4] Beagle USB 480 protocol analyzer, 2021. [Online]. Available: https://www.totalphase.com/products/
beagle-usb480/.

[5] Total Phase data center, 2021. [Online]. Available: https://www.totalphase.com/products/data-
center/.

[6] Dolphin emulator, 2021. [Online]. Available: https://dolphin-emu.org/.

[7] How to send a USB control transfer - Windows drivers | Microsoft docs, 2021. [Online]. Available: https:
//docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-control-transfer.

[8] USB passthrough, 2021. [Online]. Available: https://wiki.dolphin-emu.org/index.php?title=USB_
Passthrough.

[9] J. Harley, Rock Band 3 PS3/Wii Mustang guitar USB to MIDI software, 2021. [Online]. Available: https:
//jasonharley2o.com/wiki/doku.php?id=rb3mustang.

[10] Libusb, 2020. [Online]. Available: https://libusb.info/.

[11] Open broadcaster software | OBS, 2021. [Online]. Available: https://obsproject.com/.

[12] Qt | cross-platorm software development for embedded & desktop, 2021. [Online]. Available: https://www.
qt.io/.

[13] D. Nguyen, AutoCalibrationRB: Proof of concept (PoC) of the auto-calibration process for RB guitar con-
trollers, 2021. [Online]. Available: https://github.com/dynamix1337/AutoCalibrationRB.

[14] ——, Auto-calibration proof of concept (PoC) demonstration, 2021. [Online]. Available: https://youtu.
be/3vFgctwwBFQ.

23/23

https://blog.eccouncil.org/what-are-sniffing-attacks-and-their-types/#:~:text=Sniffing%20is%20the%20process%20of
https://blog.eccouncil.org/what-are-sniffing-attacks-and-their-types/#:~:text=Sniffing%20is%20the%20process%20of
https://mashable.com/article/what-is-game-mode-tvs/
https://mashable.com/article/what-is-game-mode-tvs/
https://www.anandtech.com/show/2648/3
https://www.totalphase.com/products/beagle-usb480/
https://www.totalphase.com/products/beagle-usb480/
https://www.totalphase.com/products/data-center/
https://www.totalphase.com/products/data-center/
https://dolphin-emu.org/
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-control-transfer
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-control-transfer
https://wiki.dolphin-emu.org/index.php?title=USB_Passthrough
https://wiki.dolphin-emu.org/index.php?title=USB_Passthrough
https://jasonharley2o.com/wiki/doku.php?id=rb3mustang
https://jasonharley2o.com/wiki/doku.php?id=rb3mustang
https://libusb.info/
https://obsproject.com/
https://www.qt.io/
https://www.qt.io/
https://github.com/dynamix1337/AutoCalibrationRB
https://youtu.be/3vFgctwwBFQ
https://youtu.be/3vFgctwwBFQ

	Introduction
	About Calibration
	Auto-Calibration Hardware
	Current State and Objective

	Background
	Beagle USB 480 and Data Center Software
	Dolphin Emulator
	Mad Catz Fender Mustang Pro-Guitar
	Communication with the Guitar Dongle

	Sniffing the USB Traffic Using the Beagle USB 480
	Hardware Setup
	Attempts to Sniff Data
	Failing Audio calibration

	Analyzing the Data
	HID Report Mapping
	Audio Calibration Analysis
	Video Calibration Analysis
	Comparing the Control URBs
	Auto-Calibration Process Hypothesis

	Testing the Process
	Unit Tests for Control URBs
	Proof of Concept Program to Reproduce In-Game Auto-Calibration
	Software Implementation
	Test Results

	Conclusion and Recommendations

