
Reverse Engineering and Design of a Linux Driver
for the PS4 USB Dongle for Guitar Hero Live

Presented to
Prof. Pascal GIARD

Prepared by
Daniel NGUYEN

daniel.nguyen.1@ens.etsmtl.ca
École de technologie supérieure

Montréal, September 30, 2021

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Contents

1 Introduction 4
1.1 Rhythm Games . 4
1.2 Guitar Hero . 4
1.3 Clone Hero and Hardware . 4
1.4 Current State and Objective . 5

2 Background 6
2.1 About the PS3 & Wii U dongles . 6
2.2 Sniffing USB Traffic . 6
2.3 Tools . 7

2.3.1 GreatFET One and FaceDancer . 7
2.3.2 Wireshark and usbmon . 7
2.3.3 Beagle USB 480 and Data Center . 8

3 First Attempt : Sniffing the USB Traffic Using the GreatFET One 9
3.1 Procedure, Obstacles and Solutions . 9

3.1.1 FaceDancer . 9
3.1.2 A 20-Second Window . 9
3.1.3 Data Analysis with ViewSB . 10
3.1.4 Unexpected Data Results . 10

3.2 Results . 11

4 Second Attempt : Sniffing the USB Traffic Using the Beagle USB 480 12
4.1 Comparison Between GreatFET One and Beagle USB 480 . 12

4.1.1 Hardware Setup . 12
4.1.2 Run Time . 12
4.1.3 Data . 13

4.2 Leads and Follow-up . 13
4.2.1 Status Difference . 13
4.2.2 Authentication Repetition . 14
4.2.3 Mapping the HID Reports . 14

4.3 “Magic” Data . 14

5 Adding PS4 Support 16
5.1 Changes for DKMS Initial Release . 16

5.1.1 hid-ghlive/src/hid-ids.h . 16
5.1.2 hid-ghlive/src/hid-ghlive.c . 16

5.2 Changes to DKMS in Preparation for Linux Kernel Inclusion . 18
5.2.1 Implementation of Dynamic Endpoint Retrieval . 18
5.2.2 Complete Code Overhaul . 20
5.2.3 Linux Kernel Tree Patch . 21

6 Conclusion and Recommendations 23

1/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

A Full authentication sequence 26

2/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Summary

Since its release in 2005, the Guitar Hero (GH) franchise grew to become popular rhythm games on gaming consoles
for children and adults alike. In 2015, Guitar Hero Live (GHL) was released, but sales failed to meet expectations
and the franchise faded away from consoles in the following years. PC-based equivalents, notably Clone Hero (CH)
released in 2017, gave players and enthusiasts a platform to play on using the console hardware and a community to
play with. However, over time, hardware became scarce due to wear and tear. Moreover, driver compatibility issues
limited the hardware that functioned on PC. This project aims to create a Linux based driver for the PlayStation (PS) 4
GHL USB dongle. The successful completion of this project will enable those dongles to be used instead of collecting
dust which is important for the CH community and the promotion of circular economy.

The PS4 dongles are nearly functional. Every button and axis movement can be registered by the PC when activated
individually. However, when fret buttons are pressed, the strum bar no longer registers. This combination is crucial
to play the game as it mimics the strumming of notes and is the problem to be solved. It is known that the guitar
controllers over the different consoles are identical and only the USB dongles differ.

The driver for PS3/Wii U dongles already exists. A “magic” packet is sent periodically to the dongle via a control
USB request block (URB) which enables the dongle to function correctly, in other words, for the combination of frets
and strum to work. The assumption is that the PS4 driver should function similarly, but with a different “magic”
packet.

To retrieve the “magic” packet sent by the PS4, a device is connected as a man-in-the-middle (MITM) between
the PS4 and USB dongle. The data sent between the two are intercepted and analyzed to identify the “magic” packet.
Two different devices were used as a MITM due to technical difficulties with the first. After in depth analysis of the
intercepted data, the “magic” packet was found being sent as an interrupt URB instead of a control URB. With the
“magic” packet identified, the Dynamic Kernel Module Support (DKMS) driver was modified to add support for the
PS4 dongle and released on May 21, 2021. This release allowed users with the PS4 dongle to use their hardware and
play CH.

While preparing the code for Linux kernel inclusion, an issue was found with regards to memory allocation and a
complete overhaul was undertaken in order to fix the issue and simplify the code. Once the fix patch was accepted, it
was possible to add the PS4 support to the Linux kernel and conclude the project.

This report takes an in-depth look at the steps taken to complete this project and puts emphasis on the obstacles
encountered as well as the solutions used to overcome them. With detailed explanations of the thought process used,
the hope is that this report may one day help others that are attempting a similar project and serve as a learning tool.

3/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Chapter 1

Introduction

The goal of this project is to create a Linux based driver for the PlayStation (PS) 4 USB dongle for Guitar Hero Live
(GHL). To reach this goal, data sniffing is used to figure out what the dongle needs to behave correctly. The term
sniffing refers to the process of monitoring and capturing all data packets that are passing through a computer network
using packet sniffers [1]. Then, updates are made to the drivers in two steps : the Dynamic Kernel Module Support
(DKMS) and the official Linux kernel. In this chapter, an introduction into rhythm games, Guitar Hero (GH), Clone
Hero (CH), and the current state of affairs will be presented.

1.1 Rhythm Games
Rhythm games have existed since the 1970s, were very popular in Japan and made their way to North America. The
first rhythm games were based on dancing and research has found that dancing games increase energy expenditure
over that of traditional video games, and that they burn more calories than walking on a treadmill [2]. Guitar games
have been used alongside physical therapy to help recovering stroke patients because of the multiple limb coordination
required [3]. Furthermore, these games often inspire people to learn to play guitar and studies have shown that playing
an instrument may be one of the best ways to help keep the brain healthy [4]. GH is the most well-known guitar game
and will be discussed in detail as it is the basis of the project.

1.2 Guitar Hero
In 2005, GH was released in North America and was an instant success. The guitar controllers had an in-line 5-button
configuration. Many sequels and band-specific installments were released throughout the following years and were
available on the major gaming consoles : Sony, Microsoft, and Nintendo. In 2009, a decline in sales caused the
industry of rhythm games to take a hiatus until 2015 when GHL was released for PS3, PS4, Wii U, Xbox 360, Xbox
One, and Apple’s iOS platforms. GHL revived the industry with a new 6-button guitar configuration (3 in series by 2
parallel) which created a whole new play style. The game did not sell as well as predicted and the release of Rock Band
(RB) 4 around the same time didn’t help. Both game publishers blamed each other for the poor sales performances.
In December 2018, Activision, the GHL publisher, shut down their servers, which reduced the available song list from
almost 500 to 42 present on disc, essentially killing the franchise. The GH community turned to CH, a PC-based clone
of Guitar Hero. CH is the game for which this project aims to indirectly contribute to and will be discussed in the
following section.

1.3 Clone Hero and Hardware
CH was released in 2017 as a replacement for Frets On Fire (FoF) and Frets On Fire X (FoFiX) which supported
4-lane drums. CH gained popularity due to its ability to play community-made songs like its predecessors. Currently,
the CH Discord server has over 155 thousand members. Although the game is PC-based and can be played with a
keyboard, most instruments from GH and RB are supported. Therefore, the demand for hardware remains high, but

4/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

hardware is becoming scarce due to wear over time. The demand has caused the prices of guitar controllers to rise and
certain controllers are even becoming collectible items. The most recent 6-button guitar controllers that were released
with GHL also function with CH. It is important to note that the limiting factor is not the guitar itself, but the required
USB dongle. The guitar controllers are the same across all platforms, but the dongles are different for each. Currently,
the Xbox 360, PS3 and Wii U dongles have drivers to support them. The PS4 dongles are the most common dongles
available and require support. Successful completion of the project will allow users who own those dongles to put
them to good use. The following section will discuss how things were at the start of this project and the primary
objective.

1.4 Current State and Objective
The PS4 dongles nearly work. In fact, when the dongle is connected to a PC, actions to the buttons (frets) and the
strum bar can be detected and their states read individually. However, when frets are held down, the strum bar no
longer reports its state. In other words, the combination of frets and strum does not function, which makes gameplay
impossible. The problem is that the dongle is not running at its full potential and limiting inputs. The assumption is
that the PS4 dongle works similarly to the PS3/Wii U dongle where it requires a periodic “magic” message in order
to behave correctly. The main objective of this project is to create a Linux based driver for the PS4 USB dongle to
function properly. In order to achieve the main objective, the project is divided into 4 secondary objectives :

• O1 : Sniff the data between the console and the dongle

• O2 : Analyze the data to understand how the dongle works

• O3 : Implement the code required to support PS4 dongles in the DKMS driver

• O4 : Submit a patch for Linux kernel inclusion

Outline

In the remainder of this report, chapter 2 provides the necessary background information required to understand the
project. It presents the methodology and tools used throughout. Next, chapter 3 describes the steps taken to capture
data using the GreatFET One [5] device in an attempt to achieve O1 and O2. It describes the obstacles and limitations
found using that device. Chapter 4 pursues the steps using the Beagle USB 480 Protocol Analyzer [6] to obtain key
data thus completing O1 and O2. It compares the differences between the two devices and presents the “magic” data.
Finally, chapter 5 covers the modifications brought to the driver code for initial release to accomplish O3 as well as
inclusion into the official Linux kernel to complete O4. It explains the code in greater detail as well as the discussions
had with Linux kernel maintainers.

5/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Chapter 2

Background

This chapter presents the background information that is required to understand the project. It explains how the driver
for the other dongles works, establishes the method for sniffing USB traffic between the console and the PS4 dongle,
and presents the hardware and software tools used in chapter 3.

2.1 About the PS3 & Wii U dongles
Initially, the Microsoft Xbox 360 dongles and their 6-button guitar controllers from GHL were the only ones to work
out of the box. Since all the guitar controllers are identical, people with controllers from PlayStation or Nintendo had
to purchase an Xbox dongle and sync their controller to the new dongle in order to play CH. In 2020, Professor Pascal
Giard created a driver for the GHL USB dongles of the PS3 and Wii U platforms to be used on the Linux platform.
The driver can be found on Github [7]. During the creation of the driver, Professor Giard found that the USB dongles
for Wii U and PS3 were identical. This was also independently found by Emma, a.k.a. InvoxiPlayGames, who is
the main author and maintainer of the GHLtarUtility repository. GHLtarUtility is a program that emulates an Xbox
360 controller while using another on the Windows platform. In order for the dongle to fully function, the driver
sends a control packet with a specific 8 bytes of data and value in the form of a USB request block (URB) every 10
seconds. This “magic” data and “magic” value were found using RPCS3 (a PS3 emulator), Wireshark and usbmon
(a Linux kernel module). Wireshark and usbmon will be introduced in detail in the following sections. With a better
understanding on how the PS3/Wii U dongles work, the next section presents the method to sniff USB traffic between
the PS4 console and the PS4 dongle.

2.2 Sniffing USB Traffic
Based on the driver created for PS3 and Wii U, the assumption is that the PS4 dongle (device) works in a similar
fashion. The PS4 runs on a closed operating system (OS). The OS is proprietary to Sony and access to the drivers built
within is restricted. Therefore, the proposed method is to sniff out the data sent between the host and the device in
order to locate the data packet that enables full operation and replicate it through a driver. In order to accomplish this,
the GreatFET One [5] is setup as a man-in-the-middle (MITM) between the PS4 and the dongle. Then, the FaceDancer
[8] software that comes with the GreatFET One is used in order to intercept the data and analyze it. Figure 2.1 presents
the physical hardware setup used.

6/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

PC
Linux (Ubuntu 20.04)GHL USB dongle PlayStation 4GreatFET One

Acting as MITM
HostDevice

Figure 2.1: GreatFET One hardware setup adapted from FaceDancer README [8]

Before any test is done, the PlayStation (PS) 4 console, USB dongle, and guitar controller were tested in order to
ensure functionality. Armed with an understanding of how the data is going to be sniffed, the next section describes
the tools used.

2.3 Tools

2.3.1 GreatFET One and FaceDancer
The GreatFET One, presented in fig. 2.2, is a device created by Great Scott Gadgets (GSG). It can be used as an
interface to an external chip, a logic analyzer, or a debugger. It is capable of supporting Hi-Speed USB which makes
it the right tool for this project because the USB dongle runs on Full-Speed which is slower. A case was 3D printed in
order to protect the GreatFET One. The stereolithography (STL) files can be found on Thingiverse [9].

Figure 2.2: GreatFET One

FaceDancer is the software that enables the GreatFET One to perform tasks such as emulation and USB proxying.
The most recent version of FaceDancer can be found on GitHub [8] in the usb-tools repository maintained by the
team from GSG. The software is written in Python and it is known to lack documentation although some examples are
provided. The USB proxy feature is noted as being complete.

2.3.2 Wireshark and usbmon
Wireshark is a widely-used network protocol analyzer, but has been capable of capturing USB traffic on Linux since
version 1.2.0 using the Linux usbmon interface. This software neatly arranges the data into blocks and allows filters
to be applied to keep or hide specific blocks. usbmon is the Linux kernel module used to collect traces of input and
output on the USB bus. Using the pair allows to view USB traffic in a user-friendly way.

7/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

2.3.3 Beagle USB 480 and Data Center
The Beagle USB 480 Protocol Analyzer is made by Total Phase [6] and is the hardware capable of capturing and
interactively displaying Hi-Speed USB bus states and traffic in real time. The Data Center [10] software is a graphical
user interface (GUI) for the Beagle analyzer. It parses and displays the captured data in blocks that are managed and
easier to analyze. The software is proprietary and does not interact with other hardware devices. In fact, the software
must detect a compatible device to connect with in order to function. It therefore can only see data coming from the
Beagle. Furthermore, the Beagle repackages the data into bulk URBs before sending it to the analysis PC where Data
Center software unpacks the data. Lastly, the file type is different than what is captured using Wireshark and usbmon.
This means that Data Center cannot parse data captured through Wireshark and vice versa.

8/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Chapter 3

First Attempt : Sniffing the USB Traffic
Using the GreatFET One

In this chapter, the first attempt to sniff the USB traffic in order to detect the “magic” data using the GreatFET One
[5] and to achieve objective O1 and O2 is discussed. In the first section, the procedure to sniff data, the obstacles,
and the solutions to the obstacles are presented. The second section explains the results and conclusions drawn which
ultimately lead to the purchase of another protocol analyzer which will be discussed in chapter 4.

3.1 Procedure, Obstacles and Solutions
In this section, the procedure to begin sniffing, the encountered obstacles, and the possible solutions that justify the
steps followed are discussed. Each subsection presents a particular obstacle and the solution found to conquer it. With
the physical setup fig. 2.1 connected and all necessary dependencies installed, the first attempt to run FaceDancer to
enable a USB proxy is performed and fails.

3.1.1 FaceDancer
The first obstacle encountered was getting the FaceDancer software to function. In order to run in USB Proxy mode,
it is necessary for the user to specify the vendor ID (VID) and the product ID (PID) of the USB device to proxy.
This information can be retrieved using the command lsusb in the Linux Terminal with the dongle inserted. The
VID is 0x1430 (RedOctane) and the PID is 0x07bb. The facedancer-usbproxy.py python script needs root ac-
cess in order to execute correctly. However, it is also necessary to maintain the environment, thus the sudo -E
./facedancer-usbproxy.py -v 0x1430 -p 0x07bb is used. This allowed the dongle (device) to begin commu-
nicating with the PS4 (host) and live data streamed through the terminal. Once the guitar controller is activated, data
packets can be seen and the host recognizes the controller as being connected. The live-streaming data representation
does not give a clear indication of the information being transferred between the host and the device. The sheer amount
of data flowing in hexadecimal format is overwhelming. Although data can be witnessed, the sample time is limited.
The following subsection discusses the 20-second window of data and what seems to be causing it.

3.1.2 A 20-Second Window
It is quickly noticed that once the guitar controller is activated, there is a limited amount of time before the controller is
no longer responsive. In fact, every test done shows approximately 20 seconds of active function before the controller
becomes unresponsive. This behaviour means that the GreatFET One is not being completely transparent throughout
the proxy. In other words, the data that flows between the PS4 and the USB dongle is getting modified when it passes
through the GreatFET One. When the USB dongle is directly connected to the PS4, the guitar controller remains
responsive at all times. With the GreatFET One acting as a MITM, the loss of responsiveness proves that the data is
not passing through completely which is preventing normal operation. Other tests are performed in order to verify the
USB proxy mode. A failed attempt to proxy a USB Mass Storage device to a laptop as well as another failed attempt to

9/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

proxy a wired controller to the same laptop proves that there is an issue with either the software or the hardware. Either
the FaceDancer software is modifying and therefore corrupting the data or there is a physical hardware problem with
the GreatFET One meaning that it is defective. Upon further research, many open issues relevant to USB proxy mode
were found on the FaceDancer GitHub [11]. The conclusion is that either the software is not functioning properly, or
the hardware is defective. Data can still be collected, but it is possible that the important data needed to accomplish the
project isn’t being sniffed. An attempt is made to reach out to the creators and maintainers of the GreatFET One and
FaceDancer tools through their Discord server [12] to get support, but without success. It is found that the team has
moved on to another project and support for the GreatFET One was not available. In fact, the original creator of USB
Proxy was no longer with the company. Considering this information and wanting to be efficient, a decision is made
to acquire a more mature device capable of performing the man-in-the-middle (MITM) task. A test was performed on
another GreatFET One device to rule out the possibility that the hardware is simply defective. The second device acted
the exact same way as the first which consequently leads us to believe that there is more likely a problem with the
software than two defective devices. Considering that during the 20-second window, the guitar controller functions as
it should, it is believed that the “magic” data is present somewhere and can be retrieved. The next subsection discusses
data analysis using ViewSB.

3.1.3 Data Analysis with ViewSB
As mentioned previously, the live streaming data seen through the terminal is not a convenient representation and is
difficult to analyze as is. It is possible to write a parser that can simplify the representation by bundling the date into
understandable blocks and filter them thereafter. Writing such a parser for this project was not necessary because it
already exists. ViewSB [13] is a tool provided by the team at GSG which was created to perform such a task. After
many attempts to use ViewSB with FaceDancer to view the data and after asking for help on the GSG Discord server,
Mikaela "Qyriad" Szekely, a software engineer at GSG, confirmed that ViewSB’s USBProxy backend is broken at the
moment and would not be usable. Considering this information, it becomes necessary to use a different parsing tool :
Wireshark and usbmon.

3.1.4 Unexpected Data Results
Upon analysis of the data captured using Wireshark and usbmon and considering that we expect to find a periodic
control packet with “magic” data, it appears that there are no control packets being repeated with static data. In fact,
in the 20-second interval of time that is sniffable, the SET report data is always different and no pattern can easily be
detected. Figure 3.1 shows an example of the report sequence that is witnessed.

Figure 3.1: Report sequence captured between PS4 and USB dongle using Wireshark

10/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

In an attempt to spot a pattern, five runs were performed and compared visually. The SET reports began the same
way and appeared to have a counter in them and many bytes left empty. The first and second GET reports returned the
same response from the device and the third GET report would sometimes return the same 64 byte response. Upon
further research involving the DualShock 4 (DS4), it was found that Sony protects their system from using cloned and
aftermarket controllers [14].

The PS4 issues a challenge to the controller and awaits its response in order to authenticate it. If the controller
fails the challenge, it gets blocked after a certain amount of time. Therefore, the 20-second window that is experienced
through USB Proxy appears to be the allocated time for the controller to be authenticated or not.

The hypothesis is that the first GET report request is the PS4 letting the controller know to get ready for a challenge.
The controller responds with a ready message or something in that order. The 8 following SET reports is the challenge.
The SET reports are numbered 0 to 7 because the order is important. The controller responds with a handshake every
time it receives data. Using cyclic redundancy check (CRC), the device must complete the calculations, proving its
authenticity. The second GET report request is the PS4 asking the controller if it’s ready to answer the challenge,
and the response is always the same return message. The final GET report request is the host asking the device for
the challenge answer. It appears to be at this moment that the connection is severed, meaning that the authentication
failed.

Research was done by others to understand the authentication process for a DS4 [14]. They concluded that the PS4
issues 5 SET reports as the challenge and expects 19 GET reports in return. This information doesn’t exactly match
what is witnessed, but does confirm that it is the authentication process. The authentication process is not important for
this project because the hardware is authentic, but simply not functioning correctly. Therefore, the data does not seem
to hold the key to success. The next section discusses the results drawn from the tests and proposes an alternative.

3.2 Results
Seeing as the guitar controller becomes unresponsive during the MITM, it is concluded that the GreatFET One is not
fully transparent. In view of this conclusion and considering the open issues on GitHub, it is logical to suppose that
the data seen using this hardware may not be complete. Another device is ordered to verify the data sniffed by the
GreatFET One : the Beagle USB 480 Protocol Analyzer [6]. The next chapter presents the continuation of the sniffing
process using the Beagle USB 480.

11/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Chapter 4

Second Attempt : Sniffing the USB Traffic
Using the Beagle USB 480

In this chapter, the second attempt to sniff the USB traffic using the Beagle USB 480 [6] and to achieve objective O1
and O2 is discussed. The first section compares the results between the two analyzers. The second section presents
the leads found and the follow-up performed. Finally, the last section presents the “magic” data which allows us to
add the PS4 support to the DKMS driver which will be seen in chapter 5.

4.1 Comparison Between GreatFET One and Beagle USB 480
In this section, a comparison is made between the GreatFET One [5] and Beagle USB 480 in terms of the hardware
setup, the duration of a run and the data observed.

4.1.1 Hardware Setup
The Beagle USB 480 is setup in a similar fashion to the GreatFET One, but with the difference that the GHL USB
dongle is plugged directly into the device and not through the PC used for analysis. Figure 4.1 below represents the
wired connections.

Beagle USB 480

GHL USB
Dongle

Device

MITMAnalysis PC

PlayStation 4

PC
Linux (Ubuntu 20.04)

Host

Figure 4.1: Beagle USB 480 Hardware Setup

4.1.2 Run Time
It is possible to play indefinitely while capturing data. The guitar controller doesn’t become unresponsive which
ensures that the data observed using the device is complete and can be trusted. This is an improvement compared to

12/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

the limited 20-second window provided by the GreatFET One. A data comparison can now be performed to either
validate or discredit the GreatFET One observed data which will be seen in following subsection.

4.1.3 Data
When comparing the control URBs captured by the GreatFET One and by the Beagle USB 480, it is observed that
there is no new data. In fact, the sequence and results are exactly the same with only one visible difference : the
response to GET STATUS. Figure 4.2 and fig. 4.3 show the difference in status.

Figure 4.2: Beagle GET STATUS response

Figure 4.3: GreatFET One GET STATUS response

When using the Beagle, the returned status is 0x0101 whereas the returned status while running the GreatFET One
or during replay attempts is 0x0001. It is possible that the status difference is key.

With the ability to capture longer samples of data, the authentication process can be observed in its entirety.
Figure A.1 shows the full authentication process occurrences over a long sample.

It is observed that the authentication sequence occurs every 75 seconds and the challenge answer is returned in 33
separate packets contrary to the single packet observed through the GreatFET One.

The difference in status and the repetitive authentication are the leads found through observing the control URB
and are pursued in more detail in the following section.

4.2 Leads and Follow-up
In this section, the leads found and their follow-ups are discussed. Each subsection presents a particular lead and the
process followed to pursue it.

4.2.1 Status Difference
As seen previously, the response to the GET STATUS packet defers when using the Beagle USB 480 and the GreatFET
One. It was logical to suppose that the status has an affect on the function of the dongle. Therefore, a replay was done
in an attempt to obtain the wStatus = 0x0101 in userspace using libusb. The attempt was unsuccessful and the status
remained 0x0001. Research was done in order to better understand what the status meant. In fact, the byte that differs
represents the remote wakeup feature. The hypothesis is that the feature should not have an effect on solving our
problem and the choice to not pursue this lead any further is made. The authentication process is the next lead to be
checked.

13/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

4.2.2 Authentication Repetition
Knowing that the authentication repeats itself every 75 seconds, the assumption is that it is this process that allows
the dongle to function properly. A replay was done which repeats the authentication process with the 8 packets
representing the challenge and the 33 return packets representing the answer. The guitar could still not perform the
combination of fret and strum which confirms that the authentication process is not the issue. This was expected
because even with the GreatFET One, before the authentication could be completed, the dongle was functioning
correctly.

With dead ends on both leads, it was decided to approach the problem in a different way. Instead of observing the
control URBs, the plan is to verify the mapping of the human interface device (HID) reports. The HID reports, which
represent the state of the buttons and axes on the guitar controller, are sent to the host in the form of a 64-byte interrupt
URBs. The assumption is that the mapping is different with the dongle and that the HID generic driver in charge of
mapping the device is missing the information. the following subsection discusses the process of mapping the HID
reports.

4.2.3 Mapping the HID Reports
In order to map the HID reports, it is necessary to start with a baseline where no buttons are pressed and the axes are
stable. From there, 1 button is pressed at a time and the reports are analyzed to find out which byte is changed in
order to map the bit that is changed. While performing the mapping, the interrupt URBs are not filtered away because
they are of interest. Once each individual button and axis is mapped, the combination of fret and strum is next. While
observing the reports in order to identify the combination, output reports are seen. Figure 4.4 below shows the filtered
output reports.

Figure 4.4: Output reports filtered

This interrupt packet is sent from the host to the device and contains a 9-byte data message. The output report also
repeats itself every 8 seconds with the same data message and could potentially be the “magic” data that allows the
dongle to function. The next section discusses the test performed with the data to achieve objective O2.

4.3 “Magic” Data
The assumption being that the output report found in the previous section is the “magic” data that unlocks the dongle,
a test is created in user space that sends the interrupt packet to the dongle using libusb functions. Right after the code
is executed, the combination of fret and strum is tested successfully and functions as intended for a few seconds. The
success of the user space test confirms that the data found in the output report is the “magic” data. The difference

14/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

between what we were expecting and reality is that instead of the “magic” data being sent through a control URB, it
is actually sent via an interrupt URB.

Considering this information, another look at the initial data retrieved from the GreatFET One was performed. The
“magic” data was found as an interrupt output and was filtered away due to the initial assumption that the “magic”
data traveled on a control URB. Over the 20-second window provided by the GreatFET One, the “magic” data is seen
on 4 frames out of over 7000 frames which made it nearly impossible to find while scrolling. In theory, the project
could’ve been completed without the Beagle USB 480.

With the “magic” data found and validated, modifications can be made to the DKMS driver. The details of the
changes made in the driver code will be detailed in chapter 5.

15/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Chapter 5

Adding PS4 Support

In this chapter, the changes made to support the PS4 dongle in the DKMS driver for initial release, the changes made
in anticipation to Linux kernel inclusion, and the final changes are presented.

It is important to note that there are slight differences between the initial release code and the final code because
the DKMS driver needed to be released quickly in order to have the CH community validate its functionality before
being included into the Linux kernel. Therefore, certain variables such as the endpoint address and bInterval value
were hard-coded instead of retrieved. Details about these variables will be discussed in the following sections.

5.1 Changes for DKMS Initial Release
The changes made for the DKMS driver release to achieve objective O3 are discussed in this section and are divided
by file name. The figures present in this section are taken from the comparison of the GitHub GH Live DKMS code [7]
before and after the added PS4 support. It is important to note that not all changes are presented in this report. Trivial
changes such as modifications to comments, version number, copyright information, rules, and module description
were made, but not documented here. To see all the changes made, visit the GitHub project [7] commit on May
21, 2021. Moreover, a potential problem with the stable kernels >= 5.11 was detected by Professor Giard when he
updated the DKMS to reflect his previous kernel inclusion. This problem was isolated as coming from certain memory
allocations and causing a hard freeze. Further investigation into the problem will be done when preparing for Linux
kernel inclusion in section 5.2 and resolved in the next version of 5.13.

5.1.1 hid-ghlive/src/hid-ids.h
In the header file, the VID and PID were defined for the PS4 dongle. Figure 5.1 shows the additional lines.

@@ -4,4 +4,7 @@
#define USB_VENDOR_ID_SONY_GHLIVE 0x12ba
#define USB_DEVICE_ID_SONY_PS3WIIU_GHLIVE_DONGLE 0x074b

{+#define USB_VENDOR_ID_REDOCTANE_GHLIVE 0x1430+}
{+#define USB_DEVICE_ID_REDOCTANE_PS4_GHLIVE_DONGLE 0x07bb+}

#endif

Figure 5.1: Addition of VID and PID

Note that the vendor ID (VID) is listed as RedOctane and not Sony.

5.1.2 hid-ghlive/src/hid-ghlive.c
In the .c file, a bit is assigned to the PS4 dongle and the poke interval is reduced to 8 seconds. Figure 5.2 shows the
changes made.

16/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

#define {+GHL_GUITAR_PS4 BIT(3)+}
{+#define+} GHL_GUITAR_PS3WIIU BIT(2)
#define GHL_GUITAR_CONTROLLER BIT(1)

#define GHL_GUITAR_POKE_INTERVAL [-10-]{+8+} /* In seconds */

Figure 5.2: Addition of bit and reduction of poke interval

Initially, the poke interval was set to 10 seconds. The data showed that the output report reoccurs every 8 seconds.
Tests were performed at 10, 9, and 8 second intervals in order to verify if the poke needed to be shortened. At 10-
second intervals, we could witness loss of fret and strum functionality every time. At 9-second intervals, we could
witness loss of fret and strum functionality from time to time. At 8-second intervals, no loss of data was found. Any
loss is unacceptable and therefore 8 seconds was chosen as the value. This shortened interval affects the PS3/Wii U
dongles as well, but was considered acceptable in order to simplify the code instead of having 2 poke intervals.

The “magic” data was added as an array. Figure 5.3 presents the 9-byte “magic” data retrieved.

@@ -31,6 +33,11 @@
static const char ghl_ps3wiiu_magic_data[] = {

0x02, 0x08, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00
};

{+/* PS4 magic data found through usb sniffing */+}
{+static const char ghl_ps4_magic_data[] = {+}
{+ 0x30, 0x02, 0x08, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x00+}
{+};+}

Figure 5.3: Addition of “magic” data array

Contrary to the PS3/Wii U driver which sends the “magic” data via control URB, the PS4 must send an interrupt
URB. An interrupt URB does not have a setup packet, but instead has information such as the endpoint address and
bInterval value for that endpoint. Therefore, in order to simplify the code and not allocate memory for a setup packet
uselessly, the decision was made to have distinct poke and callback functions for the PS3/Wii U and PS4 dongles. So,
the original poke and callbacks are renamed with the added "ps3wiiu" tag and new functions are created for the PS4
support. Figure 5.4 and fig. 5.5 present the major changes between the PS3/Wii U and PS4 poke functions : the pipe
and the fill function.

{+ unsigned int pipe = usb_sndintpipe(usbdev, 0x02);+}

Figure 5.4: Declaration of pipe using usb_sndintpipe()

When using the usb_sndintpipe() function, the endpoint address is the second specified parameter. For the
DKMS driver, the address is hard-coded as 0x02 which represents endpoint 2 as an OUT.

{+ usb_fill_int_urb(+}
{+ urb, usbdev, pipe,+}
{+ sc->databuf, poke_size,+}
{+ ghl_magic_poke_cb_ps4, NULL, 5); /* the bInterval for the EndPoint is 5. */+}
{+ ret = usb_submit_urb(urb, GFP_ATOMIC);+}

Figure 5.5: Interrupt URB fill function

The usb_fill_int_urb() is similar to the usb_fill_control_urb() except that the interrupt version does
not require the setup packet and instead requires a bInterval value. For endpoint 2, the bInterval = 5 and is found using
lsusb. The address and bInterval values will need to be retrieved instead of hard-coded for Linux kernel inclusion
and will be discussed in section 5.2. Since the interrupt URB does not require a setup packet, the callback function
only frees the transfer buffer.

17/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

In the probe function, the mod_timer() remains common and it is here that we differentiate between the PS3/Wii
U and PS4 dongles using the quirks and an if...else if condition. Figure 5.6 shows the added condition.

@@ -162,11 +217,13 @@
static int ghlive_probe(struct hid_device *hdev,

}

if (sc->quirks & GHL_GUITAR_PS3WIIU) {
timer_setup(&sc->poke_timer, [-ghl_magic_poke,-]{+ghl_magic_poke_ps3wiiu,+} 0);[-mod_timer(&sc->poke_timer,-]

[- jiffies + GHL_GUITAR_POKE_INTERVAL*HZ);-]
}
{+else if (sc->quirks & GHL_GUITAR_PS4){+}

{+ timer_setup(&sc->poke_timer, ghl_magic_poke_ps4, 0);+}
{+ } +}
{+ mod_timer(&sc->poke_timer,+}
{+ jiffies + GHL_GUITAR_POKE_INTERVAL*HZ);+}

return ret;
}

Figure 5.6: Addition of condition to verify dongle type

The quirks represent the driver_data which are defined in the hid_device_id structure. Figure 5.7 presents
the addition of the PS4 device to the structure.

static const struct hid_device_id ghlive_devices[] = {
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY_GHLIVE, USB_DEVICE_ID_SONY_PS3WIIU_GHLIVE_DONGLE),

.driver_data = GHL_GUITAR_CONTROLLER | GHL_GUITAR_PS3WIIU},
{+{ HID_USB_DEVICE(USB_VENDOR_ID_REDOCTANE_GHLIVE, USB_DEVICE_ID_REDOCTANE_PS4_GHLIVE_DONGLE),+}

{+ .driver_data = GHL_GUITAR_CONTROLLER | GHL_GUITAR_PS4 },+}
{ }

};

Figure 5.7: Addition of PS4 device

This concludes the changes required to have a functional DKMS driver. The next section presents the changes
required for Linux kernel inclusion, notably the retrieval of the endpoint address and bInterval value discussed previ-
ously.

5.2 Changes to DKMS in Preparation for Linux Kernel Inclusion
The changes made to the DKMS driver in preparation for Linux kernel inclusion are discussed in this section and are
based on the additions to the DKMS driver seen in section 5.1. The first subsection discusses the changes made to
replace the hard-coded endpoint address and bInterval values with a dynamic method. The second subsection presents
the complete overhaul of the code to fix a detected hard freeze. Finally, the third section describes the two patches
submitted for kernel inclusion.

5.2.1 Implementation of Dynamic Endpoint Retrieval
Using xpad.c and hid-corsair.c as examples, the OUT endpoint was retrieved dynamically instead of being hard-coded.
First, the ghlive_sc structure received a new data item. Figure 5.8 represents the addition of an endpoint descriptor
structure.

18/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

@@ -44,6 +44,7 @@ struct ghlive_sc {
int device_id;
struct timer_list poke_timer;
struct usb_ctrlrequest *cr;
{+struct usb_endpoint_descriptor *ep_irq_out;+}
u8 *databuf;

};

Figure 5.8: Modified ghlive_sc structure

The struct usb_endpoint_descriptor is added in order to save the information about the endpoint which
will be retrieved during the probe function and used in the poke function.

In the probe function, the newly added ep_irq_out is initialized to NULL. Then, the following lines are added in
the else if condition. Figure 5.9 presents the block of code that dynamically retrieves the endpoint from the USB
interface.

else if (sc->quirks & GHL_GUITAR_PS4){

{+struct usb_interface *intf = to_usb_interface(sc->hdev->dev.parent);+}

{+ if (intf->cur_altsetting->desc.bNumEndpoints != 2)+}
{+ return -ENODEV;+}
{+ +}
{+ for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { +}
{+ struct usb_endpoint_descriptor *ep =+}
{+ &intf->cur_altsetting->endpoint[i].desc;+}
{+ +}
{+ if (usb_endpoint_xfer_int(ep)) { +}
{+ if (usb_endpoint_dir_out(ep))+}
{+ sc->ep_irq_out = ep;+}
{+ }+}
{+ }+}

timer_setup(&sc->poke_timer, ghl_magic_poke_ps4, 0);

Figure 5.9: Retrieving endpoint descriptor

A usb_interface structure is declared and retrieved using the to_usb_interface() function. The interface
allows the driver to verify the number of endpoints and to validate that there are in fact 2 endpoints. Next, a for loop
iterates through the available endpoints and finds the OUT endpoint, which gets saved to the ep_irq_out. With the
OUT endpoint descriptor in memory, it is possible to replace the hard-coded values 0x02 and 5 to their dynamically
retrieved values. Figure 5.10 presents the replacement of the hard-coded values.

@@ -123,7 +124,7 @@ static void ghl_magic_poke_ps4(struct timer_list *t)
struct usb_device *usbdev = to_usb_device(sc->hdev->dev.parent->parent);
const u16 poke_size =

ARRAY_SIZE(ghl_ps4_magic_data);
unsigned int pipe = usb_sndintpipe(usbdev, [-0x02);-]{+sc->ep_irq_out->bEndpointAddress);+}

sc->databuf = kzalloc(poke_size, GFP_ATOMIC);
if (!sc->databuf) {

@@ -142,7 +143,7 @@ static void ghl_magic_poke_ps4(struct timer_list *t)
usb_fill_int_urb(

urb, usbdev, pipe,
sc->databuf, poke_size,
ghl_magic_poke_cb_ps4, NULL, [-5); /* the bInterval for the EndPoint is 5. */-]{+sc->ep_irq_out->bInterval);+}

ret = usb_submit_urb(urb, GFP_ATOMIC);

Figure 5.10: Replacing values

The next step is to investigate the possibility of a hard freeze situation in the kernel tree.

19/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

5.2.2 Complete Code Overhaul
As mentioned in section 5.1, a potential problem causing a hard freeze was detected. A clone of the kernel tree repos-
itory was compiled and the problem confirmed. The memory allocations made in the ghl_magic_poke() function
were causing the hard freeze. After discussion, the choice was made to completely overhaul the code by simplifying
memory allocation and usage. Instead of allocating memory to build a URB periodically in the ghl_magic_poke()
function, the URB is built once during the ghlive_probe() function and re-used periodically. Furthermore, the allo-
cations will be done using the devm_kzalloc() function in order for the device to manage the memory. There is no
need to free memory allocated with that function. The primary changes to hid-ghlive.c are shown here. For a complete
view of all the changes, visit the GitHub project [7] commit on June 3, 2021.

To implement the simplification, it is necessary for the ghlive_sc structure to change. Figure 5.11 presents the
changes made.

struct ghlive_sc {
struct hid_device *hdev;
unsigned long quirks;
[-int device_id;-]{+struct urb *urb;+}
struct timer_list poke_timer;

[- struct usb_ctrlrequest *cr;-]
[- struct usb_endpoint_descriptor *ep_irq_out;-]
[- u8 *databuf;-]
};

Figure 5.11: Overhauling the ghlive_sc structure

The structure must contain the URB. The poke_timer is kept in order to maintain periodicity and the hdev and
quirks are kept as well. The device_id is found to be an artefact from previous tests and is removed. The cr,
ep_irq_out, and databuf are removed because they will be created during the probe function and will no longer
needed once the URB is built. This simplification also removes the need to have separate poke functions and callback
functions for PS3/Wii U and PS4. Figure 5.12 and fig. 5.13 present the changes made to unify the functions.

static void [-ghl_magic_poke_ps3wiiu(struct-]{+ghl_magic_poke(struct+} timer_list *t)
{

int ret;
[- struct urb *urb;-]

struct ghlive_sc *sc = from_timer(sc, t, poke_timer);
[- struct usb_device *usbdev = to_usb_device(sc->hdev->dev.parent->parent);-]
[- const u16 poke_size =-]
[- ARRAY_SIZE(ghl_ps3wiiu_magic_data);-]
[- unsigned int pipe = usb_sndctrlpipe(usbdev, 0);-]

[- sc->cr = kzalloc(sizeof(*sc->cr), GFP_ATOMIC);-]
[- if (!sc->cr)-]
[- goto resched;-]

[- sc->databuf = kzalloc(poke_size, GFP_ATOMIC);-]
[- if (!sc->databuf) {-]
[- kfree(sc->cr);-]
[- goto resched;-]
[- }-]

[-urb-]{+ret+} = [-usb_alloc_urb(0,-]{+usb_submit_urb(sc->urb,+} GFP_ATOMIC);
if [-(!urb) {-]

[- kfree(sc->databuf);-]
[- kfree(sc->cr);-]
[- goto resched;-]{+(ret < 0)+}
{+ hid_err(sc->hdev, "usb_submit_urb failed: %d", ret);+}
}

Figure 5.12: Unification of the pokefunction

20/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

The poke function only submits the URB and the callback function verifies the transfer status and reschedules the
timer.

static void [-ghl_magic_poke_cb_ps3wiiu(struct-]{+ghl_magic_poke_cb(struct+} urb *urb)
{

[-if (urb) {-]
[- /* Free sc->cr and sc->databuf allocated in ghl_magic_poke_ps3wiiu() */-]
[- kfree(urb->setup_packet);-]
[- kfree(urb->transfer_buffer);-]
[- }-]
[-}-]{+struct ghlive_sc *sc = urb->context;+}

[-static void ghl_magic_poke_cb_ps4(struct urb *urb)-]
[-{-] if [-(urb) {-]
[- /* Free sc->databuf allocated in ghl_magic_poke_ps4() */-]
[- kfree(urb->transfer_buffer);-]
[- }-]{+(urb->status < 0)+}
{+ hid_err(sc->hdev, "URB transfer failed : %d", urb->status);+}

{+ mod_timer(&sc->poke_timer, jiffies + GHL_GUITAR_POKE_INTERVAL*HZ);+}
}

Figure 5.13: Unification of the callback function

Since the URB types required for the PS3/Wii U and PS4 are different, separate functions (ghl_init_urb_ps3wiiu
and ghl_init_urb_ps4) are created to initialize the correct URB depending on the dongle type. These functions re-
use the same logic that used to be inside the poke functions. Also, the recently added dynamic endpoint address
retrieval code is moved out of the probe function and into ghl_init_urb_ps4. The probe function simply calls the
correct URB initialization function and sets up the timer. As mentioned, using the devm_kzalloc function releases
us from needing to manage the memory freeing. The only memory that needs to be managed is the memory allocated
for the URB which is only freed when the device is removed. Figure 5.14 presents the line that frees the URB within
the ghlive_remove function.

@@ -248,13 +223,14 @@
static void ghlive_remove(struct hid_device *hdev)

struct ghlive_sc *sc = hid_get_drvdata(hdev);

del_timer_sync(&sc->poke_timer);
{+usb_free_urb(sc->urb);+}
hid_hw_close(hdev);
hid_hw_stop(hdev);

}

Figure 5.14: Freeing URB memory upon removal of the device

With the DKMS driver simplified and tested, the last step is to include the changes to the Linux kernel in order to
achieve objective O4.

5.2.3 Linux Kernel Tree Patch
The kernel inclusion was done in two parts due to the detection of the hard freeze. The first patch repairs the problem
and the second patch adds PS4 support. Simply put, the overhauled code from the DKMS driver was implemented
into hid-sony.c to fix the hard freeze caused by the memory allocations without the added support. Once the fix was
applied to the kernel [15], the PS4 support could be added and a second patch submitted. All patches are sent via
e-mail and these e-mails are archived. The PS4 support patch mailing list archive can be found on marc.info [16].

After the submission of the PS4 support patch, it was brought to our attention that our code contained a lot of direct
USB calls which was not ideal because they are not covered by regression tests. It was suggested that we use certain
functions, notably hid_hw_raw_request(), that were covered by regression tests and a patch was made available to

21/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

us for testing. However, this patch caused a hard freeze and the following error message : BUG: scheduling while
atomic. We attempted to pinpoint the source of the hard freeze by investigating every function called within it, and
we suspect that the cause is the usb_control_msg(). In fact, the description of usb_control_msg() stipulates to
not use this function from within an interrupt context [17] which is our case. The description also suggests the use of
usb_submit_urb() for asynchronous messages which is the function that we are using.

Furthermore, we learnt that certain devices were capable of handling controls sent through interrupt and control
transfers. We tested if it were possible to send the “magic” data using a control transfer, and it does function. Therefore,
it is possible to modify the code to send as control transfer in order to share more code paths with the PS3/WiiU-dongle
support. Also, we learnt that the wValue parameter of the control transfer for the PS3/WiiU (wValue = 0x201), which
we believed to be a “magic” value, is not “magic”. We tested other values and the dongle still functioned as long as the
“magic” data remains the same. Therefore, we could remove the “magic” value and have it generated automatically in
the same way that hid_hw_raw_request() creates the wValue parameter.

A second version of the patch was created and the changes were also made to reflect on the DKMS driver. Fig-
ure 5.15 and fig. 5.16 present the important changes made in version 2.

static int ghl_init_urb(struct sony_sc *sc, struct usb_device *usbdev{+,+}
{+ const char ghl_magic_data[], u16 poke_size+})
{

struct usb_ctrlrequest *cr;
[- u16 poke_size;-]

u8 *databuf;
unsigned int pipe;
{+u16 ghl_magic_value = (((HID_OUTPUT_REPORT + 1) << 8) | ghl_magic_data[0]);+}

[- poke_size = ARRAY_SIZE(ghl_ps3wiiu_magic_data);-]
pipe = usb_sndctrlpipe(usbdev, 0);

cr = devm_kzalloc(&sc->hdev->dev, sizeof(*cr), GFP_ATOMIC);
@@ -663,10 +674,10 @@ static int ghl_init_urb(struct sony_sc *sc, struct usb_device *usbdev)

cr->bRequestType =
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT;

cr->bRequest = USB_REQ_SET_CONFIGURATION;
cr->wValue = cpu_to_le16([-ghl_ps3wiiu_magic_value-]{+ghl_magic_value+});
cr->wIndex = 0;
cr->wLength = cpu_to_le16(poke_size);
memcpy(databuf, [-ghl_ps3wiiu_magic_data-]{+ghl_magic_data+}, poke_size);

Figure 5.15: Replacing the “magic” value

Since the ghl_init_urb() is to be shared for the PS3/WiiU and PS4, the function receives two new parameters:
the “magic” data and the array size (poke_size). These parameters will be filled during the probe function depending
on the dongle.

if (sc->quirks & {+(+}GHL_GUITAR_PS3WIIU {+| GHL_GUITAR_PS4)+}) {
sc->ghl_urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!sc->ghl_urb)

return -ENOMEM;

{+if (sc->quirks & GHL_GUITAR_PS3WIIU)+}
ret = ghl_init_urb(sc, usbdev{+, ghl_ps3wiiu_magic_data,+}

{+ ARRAY_SIZE(ghl_ps3wiiu_magic_data));+}
{+ else if (sc->quirks & GHL_GUITAR_PS4)+}
{+ ret = ghl_init_urb(sc, usbdev, ghl_ps4_magic_data,+}
{+ ARRAY_SIZE(ghl_ps4_magic_data)+});

Figure 5.16: Calling the ghl_init_urb function within probe()

The patch version 2 is simpler and allows for code sharing. The changes made for the DKMS driver can be found
on the GitHub page [7].On August 20, 2021 the patch was accepted and applied to next.

22/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Chapter 6

Conclusion and Recommendations

Conclusion
In this report, we presented the steps performed to reverse engineer and design a Linux driver for the PS4 USB dongle
for Guitar Hero Live which was unsupported until this point. We presented the steps performed to sniff data using the
GreatFET One and the Beagle USB 480 and successfully found the “magic” data to unlocking full functionality. As a
result, we have the means to implement support for PS4 dongles as a DKMS driver and directly into the Linux kernel.
This added support enables the use of the PS4 hardware and promotes circular economy.

It could have been possible to complete this project without the purchase of the Beagle USB 480 Protocol Analyzer
since the “magic” data could be found using the GreatFET One. However, because the guitar controller could not
maintain a connection longer than 20 seconds, it was logical to doubt the data retrieved and to continue assuming that
the “magic” data was transmitted via control transfer.

Recommendations
1. Explore why the GreatFET One is not fully transparent

The first attempts at sniffing data were carried out using the GreatFET One device and we noticed that a lack
of transparency from the hardware or software was causing the communication between host and device to be
broken after 20 seconds. The cause should found so that we can put the devices to good use.

23/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Acknowledgement

I gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).
I would like to thank my mentor, Professor Pascal Giard, for allowing me this opportunity to step out of my comfort
zone and for inspiring me to pursue my studies beyond my purview. Your support and belief in me were instrumental
in the success of this project.

24/26

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Bibliography

[1] EC-Council, What are sniffing attacks and their types? EC-Council Official Blog, Jun. 2020. [Online]. Avail-
able: https://blog.eccouncil.org/what- are- sniffing- attacks- and- their- types/#:~:
text=Sniffing%20is%20the%20process%20of (visited on 06/03/2021).

[2] M. Clinic, Adding activity to video games fights obesity, study shows, ScienceDaily, Jan. 2007. [Online].
Available: https://www.sciencedaily.com/releases/2007/01/070104144703.htm (visited on
05/14/2021).

[3] G. Boston, Healing with guitar hero, The Washington Times, Sep. 2008. [Online]. Available: https://www.
washingtontimes.com/news/2008/sep/24/you-dont-have-to-be-a-quick-fingered-15-year-
old-t/ (visited on 05/14/2021).

[4] S. Sapega, Playing an instrument: Better for your brain than just listening, Penn Medicine News, Jan. 2017.
[Online]. Available: https://www.pennmedicine.org/news/news-blog/2017/january/playing-an-
instrument-better-for-your-brain-than-just-listening (visited on 05/14/2021).

[5] GreatFET One, 2021. [Online]. Available: https://greatscottgadgets.com/greatfet/one/.

[6] Beagle USB 480 protocol analyzer, 2021. [Online]. Available: https://www.totalphase.com/products/
beagle-usb480/.

[7] HID GHLive DKMS, 2021. [Online]. Available: https://github.com/evilynux/hid-ghlive-dkms.

[8] Facedancer, 2021. [Online]. Available: https://github.com/usb-tools/Facedancer.

[9] Greatbox STL, 2019. [Online]. Available: https://www.thingiverse.com/thing:3835955.

[10] Total phase data center, 2021. [Online]. Available: https://www.totalphase.com/products/data-
center/.

[11] Facedancer issues, 2021. [Online]. Available: https://github.com/usb-tools/Facedancer/issues.

[12] Great scott gadgets discord server, 2021. [Online]. Available: https://discord.gg/rsfMw3rsU8.

[13] ViewSB, 2021. [Online]. Available: https://github.com/usb-tools/ViewSB.

[14] PS4 - controller authentication, 2018. [Online]. Available: https://forum.gimx.fr/viewtopic.php?f=
3&t=2384&sid=56a525b470c20a9dd01f7843ffc49387.

[15] Mailing list archive : Fix patch, 2021. [Online]. Available: https://marc.info/?t=162282312900003&r=
1&w=2.

[16] Mailing list archive : Ps4 support patch, 2021. [Online]. Available: https://marc.info/?t=162637933100002&
r=1&w=2.

[17] Usb_control_msg(9), 2021. [Online]. Available: https://manpages.debian.org/jessie-backports/
linux-manual-4.8/usb_control_msg.9.en.html.

25/26

https://blog.eccouncil.org/what-are-sniffing-attacks-and-their-types/#:~:text=Sniffing%20is%20the%20process%20of
https://blog.eccouncil.org/what-are-sniffing-attacks-and-their-types/#:~:text=Sniffing%20is%20the%20process%20of
https://www.sciencedaily.com/releases/2007/01/070104144703.htm
https://www.washingtontimes.com/news/2008/sep/24/you-dont-have-to-be-a-quick-fingered-15-year-old-t/
https://www.washingtontimes.com/news/2008/sep/24/you-dont-have-to-be-a-quick-fingered-15-year-old-t/
https://www.washingtontimes.com/news/2008/sep/24/you-dont-have-to-be-a-quick-fingered-15-year-old-t/
https://www.pennmedicine.org/news/news-blog/2017/january/playing-an-instrument-better-for-your-brain-than-just-listening
https://www.pennmedicine.org/news/news-blog/2017/january/playing-an-instrument-better-for-your-brain-than-just-listening
https://greatscottgadgets.com/greatfet/one/
https://www.totalphase.com/products/beagle-usb480/
https://www.totalphase.com/products/beagle-usb480/
https://github.com/evilynux/hid-ghlive-dkms
https://github.com/usb-tools/Facedancer
https://www.thingiverse.com/thing:3835955
https://www.totalphase.com/products/data-center/
https://www.totalphase.com/products/data-center/
https://github.com/usb-tools/Facedancer/issues
https://discord.gg/rsfMw3rsU8
https://github.com/usb-tools/ViewSB
https://forum.gimx.fr/viewtopic.php?f=3&t=2384&sid=56a525b470c20a9dd01f7843ffc49387
https://forum.gimx.fr/viewtopic.php?f=3&t=2384&sid=56a525b470c20a9dd01f7843ffc49387
https://marc.info/?t=162282312900003&r=1&w=2
https://marc.info/?t=162282312900003&r=1&w=2
https://marc.info/?t=162637933100002&r=1&w=2
https://marc.info/?t=162637933100002&r=1&w=2
https://manpages.debian.org/jessie-backports/linux-manual-4.8/usb_control_msg.9.en.html
https://manpages.debian.org/jessie-backports/linux-manual-4.8/usb_control_msg.9.en.html

Reverse Engineering and Design of a Linux Driver for the PS4 USB Dongle for Guitar Hero Live Daniel NGUYEN

Appendix A

Full authentication sequence

Figure A.1: Full authentication sequence

26/26

	Introduction
	Rhythm Games
	Guitar Hero
	Clone Hero and Hardware
	Current State and Objective

	Background
	About the PS3 & Wii U dongles
	Sniffing USB Traffic
	Tools
	GreatFET One and FaceDancer
	Wireshark and usbmon
	Beagle USB 480 and Data Center

	First Attempt : Sniffing the USB Traffic Using the GreatFET One
	Procedure, Obstacles and Solutions
	FaceDancer
	A 20-Second Window
	Data Analysis with ViewSB
	Unexpected Data Results

	Results

	Second Attempt : Sniffing the USB Traffic Using the Beagle USB 480
	Comparison Between GreatFET One and Beagle USB 480
	Hardware Setup
	Run Time
	Data

	Leads and Follow-up
	Status Difference
	Authentication Repetition
	Mapping the HID Reports

	``Magic'' Data

	Adding PS4 Support
	Changes for DKMS Initial Release
	hid-ghlive/src/hid-ids.h
	hid-ghlive/src/hid-ghlive.c

	Changes to DKMS in Preparation for Linux Kernel Inclusion
	Implementation of Dynamic Endpoint Retrieval
	Complete Code Overhaul
	Linux Kernel Tree Patch

	Conclusion and Recommendations
	Full authentication sequence

